定制报告-个性化定制-按需专项定制研究报告
行业报告、薪酬报告
联系:400-6363-638
《腾讯研究院&香港中文大学(深圳):2024年AI与可持续发展展望报告(85页).pdf》由会员分享,可在线阅读,更多相关《腾讯研究院&香港中文大学(深圳):2024年AI与可持续发展展望报告(85页).pdf(85页珍藏版)》请在薪酬报告网上搜索。
1、与可持续发展展望AIAI and Sustainable Development Outlook编委会司 晓丨腾讯副总裁 腾讯研究院院长杨 健丨腾讯副总裁 腾讯研究院总顾问翟永平丨腾讯SSV碳中和实验室高级顾问张 骁丨腾讯SSV数据与算法中心负责人刘玉龙丨腾讯青腾负责人任 颋丨北京大学汇丰商学院副院长郝 亮丨南方科技大学教授黄 平丨香港中文大学(深圳)国际事务研究院研究副教授 高级公共管理研修项目中心执行主任赵俊华丨香港中文大学(深圳)李 孜丨腾讯研究院吴海峰丨深圳高等金融研究院刘国龙丨南洋理工大学顾问主编策划王 强 王 鹏 柳文轩 王馨蕾 杨 超廖焕新 平依鹭编写委员张书文 丁子岳 孟祥瑞
2、朱一凡 叶于诚王家驹 谢丰泽 张 鹏 刘欣语 研究支持腾讯研究院 香港中文大学(深圳)腾讯SSV数据与算法中心 腾讯青腾联合出品前言FOREWORDAI与可持续发展:人机共生的研究与分析框架联合国2030年可持续发展议程强调“人类、地球、繁荣、和平与伙伴”,为全球提供了从传统发展模式向可持续发展模式转变的范式。2024年9月联合国未来峰会将进一步讨论人工智能、数字经济与可持续发展的关系。针对这样的背景,AI与全球可持续发展展望报告,将分析AI及大模型技术革新对对全球可持续发展的挑战与机遇。在21世纪,气候变化、AI技术进步与地缘政治的交融,正在深刻地重塑世界新格局,这将给我们带来什么挑战与机遇
3、?如何构建一个跨学科,跨界的综合框架来支持分析与战略规划?AI与可持续发展展望旨在分析和探索“AI与可持续发展框架”关键层面,为新世纪格局的科技、社会、经济与政治叙事提供框架。从科技企业AI技术与产业领导的未来人机交互界面(海平面),从而提供产品抓手来影响世界的关键层面,衍生到“海平面”之下主导AI及机器世界的基础设施与基础协议层面,以及海平面之上影响人思考与行为模式的各个层面,共计8个层面从底层到顶层简要介绍:一.AI与可持续发展研究与分析框架李孜腾讯研究院资深专家图1 AI与可持续发展:人机共生的研究与分析框架AI与气候变化及全球碳中和层面前言FOREWORD这个层面强调了东西方之间新的核
4、心共识,强调了碳中和的愿景,并强调了技术和价值观之间的关键交汇点。这个概念强调将环境和气候风险整合到新数字科技经济体系中,以促进可持续发展,减少气候变化的影响,并确保环境、经济和社会的协调发展。AI及大模型支持碳交易、碳捕获和碳储存等新模式是实现这一目标的关键工具。“碳中和”能否通过社会、经济和政治结构成为一项关键原则?AI与信息和通信技术基础设施层面信息通信技术构成了现代地理景观的基石。这个层面将技术堆栈分为技术基础设施、网络层、应用层和数据流。这些元素在信息传播、创新与社会变革中发挥着关键作用,但也在道德和隐私方面提出了挑战。信息通信技术如何涵盖技术设计和价值系统设计之间的跨学科研究,特别
5、是在地缘政治中的新战略定位?AI技术革新气候变化人类地缘政治伦理1.意识形态2.民族3.国家5.隐私&分配7.1CT8.碳化&能源4.人机交互界面前言FOREWORDAI与世界数字ID系统和协议层面在这个层面上,重点是“世界ID和基础协议”的概念,通过标识、识别和数据管理,以及可编程的金融技术,特别是与碳中和逻辑集成的可编程金融系统,将强调人工智能时代的新工作模式与分配制度。该框架强调了隐私保护的必要性,并可能通过人工智能产业收益实验全民基本收入(UBI)的可能性?人机共生世界的基本问题是,我们如何在人类和人工智能之间进行区分,并建立一个全球数字身份系统?AI与人机界面层面,及“海平面”该层面
6、侧重于与“人工智能与人的需求”的技术设计与产品的相关的问题,是当下绝大多数数字科技企业的发展方向。因此,需要一种平衡的方法来充分利用人工智能的潜力来促进社会的整体利益,同时解决透明度、公平性、教育和监管等问题。这个场面需要深入探索关键领域,如技术设计、人工智能技术的应用、决策、道德、教育和监管。作为一个强大的工具,人工智能如何在实现东西方之间新的全球共识方面发挥关键作用?AI与数据管理和资源分配层面定义和使用数据本身结构将在资源分配中做出决定作用?数据的定义、使用和共享或将决定数据产生的价值如何分配给不同的利益相关者,包括个人、企业和社会组织等。因此,数据管理不仅需要考虑个人隐私权,还需要考虑
7、资源和公共管理,以确保公平性和可持续性。数据创造的商业和社会价值决定了其作为未来资源分配的关键因素的重要性。无论是在物质层面,如土地和自然资源,还是在虚拟层面,包括数据,它们都被认为是最重要的生产资料,需要高度重视数据和资源的重要性。技术协议设计如何深刻影响数据的定义与资源分配?前言FOREWORDAI与国家治理层面在过去与现在,由于非政府组织、跨国公司等非国家实体能够推动超越国家范围的变革和治理。在这一背景下,全球治理由上述非国家实体共同参与,作为国家机构的补充。同时AI及数字技术和网络,让个人和一些组织能够参与到构建、参与并支持其建立的虚拟机构或“云国家”中。这些虚拟机构不依赖于地理位置,
8、而是基于在线通信和数字协议。个人和机构根据自己的价值观选择加入这些虚拟国家,并通过区块链等技术实现自治和治理。这种观点挑战了传统国家主权的概念,将治理下放至个人和社区层面。这些现象反映了AI与数字技术如何重塑了内部结构和治理的复杂性。一方面,数字技术促进了全球范围内的合作与治理,打破了传统国家边界;另一方面,它也提供了个人和社区自我组织和治理的新途径,挑战了国家的传统角色。AI及数字技术的兴起对传统边界和国家治理可能带来了哪些挑战?AI与民族认同纵观历史,民族身份和文明之间的竞争与合作的相互作用塑造了不同国家和地区的发展轨迹。中国历史上“华夷之辨”和西方罗马帝国文明的向心力等例子提供了这方面的
9、历史经验。而当下社会发展的多样性和复杂性,需要我们更深入地思考AI对未来从文明体系到人类族群的演进的影响。我们应该如何看待民族在地缘政治中的作用,民族在地缘政治景观中发展新文明中的重要性?前言FOREWORDAI与价值观和道德伦理层面随着社会在应对气候变化和人工智能技术创新的同时,政治和经济系统正在经历根本性的转变。这包括政府决策对商业行为的影响、国际关系的演变以及全球新规范的建立。社会要求政府和企业采取更加负责任和可持续的行为,适应法律和法规的改革。这部分可以通过分析的四个主要因素即投资、计算能力的提高、算法效率的提升和如强化学习等技术带来的收益,由于对大模型研发的一个重要区域是美国,对美国
10、的AI与大模型发展规模和效应做出合理判断,也是对中国有借鉴意义:人工智能时代将形成何种价值观和全球道德伦理体系?此外,国际社会正在努力构建一个全球性的未来议程框架,以解决气候变化、数字权利等跨领域问题。这种转变涉及到重新定义人类与AI及科技技术之间的道德关系,对治理结构和全球规范产生深远影响。它不仅要求我们重新思考技术发展与社会伦理之间的平衡,还涉及到如何在全球范围内协调行动,确保技术进步能够促进共同福祉,而非加剧不平等或环境破坏。这一过程需要跨学科的合作,包括法律、伦理学、政策制定、科技以及社会学跨界共同参与,以确保全球道德伦理体系的构建既符合人类共同利益,又能适应快速变化的技术环境。总之,
11、在“AI与可持续发展展望”框架试图结构性的理解和分析气候变化,大模型技术革新与地缘战略中的复杂问题。在分析了“AI与可持续发展展望”的中长期框架后,未来几年的短期内AI及大模型技术突破是否可以支持AI与技术产业发展,社会与经济变革呢?二.AI及大模型技术革新前言FOREWORD1.投资 2024年2月10号,OpenAI首席执行官Sam Altman 提出计划筹资7万亿美元兴建包括GPU堆栈在内的AI方面的投资。事实上,大型科技公司一直AI研发上大幅增加资本支出。微软和谷歌的资本支出可能会超过500亿美元,AWS和Meta今年的资本支出超过400亿美元。由于人工智能的蓬勃发展,以OpenAI为
12、代表的美国AI研发与应用的公司带动的相关资本支出总额将同比增长500至1000亿美元。同时,通过削减其他资本支出,这些企业将更多资金转移到人工智能上。此外,其他科技企业也在大力投入人工智能,例如特斯拉今年在人工智能上将花费100亿美元。更重要的是美国政府也将大力投资人工智能。美国今年在人工智能总投资预计可能达到1千亿美元。未来几年年,美国平均每年的人工智能总投资预计可能达到 1 万亿美元1,这个数字听起来令人难以置信。从 1996 年到 2001 年,美国在电信行业2在建设互联网基础设施上投资了近 1 万亿美元(按当时的美元购买力折算到今天)。可见,在重大技术革新时期,特别是基础设施方面的巨大
13、投资,美国存在先例与可行性。但是,如果美国的人工智能投资达到每年 1 万亿美元,将占 美国2024年28.63万亿美元GDP 的约 3.5%,这也是巨大的。但是美国千亿级的投资已经开始,如Open AI、AWS、XAI、Google与Meta等公司在规划的GPA集群投资计划加在一起今年总和接近千亿美元。1SITUATIONAL AWARENESS的报告:https:/situational-awareness.ai/https:/sgp.fas.org/crs/misc/RL34645.pdf 2https:/ Epoch AI的公开估计来追踪从 2019 年到 2023 年的计算扩展,从 G
14、PT-2 到 GPT-3 的扩展非常迅速,计算资源的使用也急剧增加,从较小的实验规模扩展到使用整个数据中心来训练大型语言模型。随着从 GPT-3 到 GPT-4 的扩展,需要为下一个模型构建全新的、更大规模的集群。然而,这种快速增长的趋势仍在继续。总体而言,Epoch AI 估计表明,GPT-4 的训练使用的计算量比 GPT-2 多约 3000 到 10000 倍。3.算法效率提高与硬件技术改进从在过去四年的公开数据分析,可以推断:从API成本分析,在明确区分训练成本或效率,和使用成本或效率(包括输入和输出),一般来说训练成本比使用成本大得多。从计算成本变化=算法效率变化*单位计算成本变化,可
15、以推断出从 GPT-3 到 GPT-4 的单位计算成本下降或者效率提升是可能来总体来看,这只是长期趋势的延续。由于投资的广泛增加以及专门用于 AI 工作负载的 GPU 和 TPU 等芯片的开发,未来几年里,通过价值数百亿美元的GPU堆栈集群,将实现现在计算量的100倍,似乎非常有可能实现。通过建设超过 1000 亿美元的GPU集群,实现现在计算量的1000 倍的也显得可行。OOM(数量级,order of magnitude):a 个 OOM 指的是 10a图2 Epoch AI 估计表前言FOREWORD4.其他技术与方法(Unhobbling)通过人类反馈进行强化学习(RLHF)使模型变得
16、真正有用和有商业价值。比如,RLHF让小型模型在用户偏好上等同于一个非RLHF的百倍大模型。思维链(Chain of Thought,CoT):在解决数学和推理问题时,CoT相当于超过10倍的计算效率提升。Scaffolding:类似CoT的增强版,不同模型分工合作解决问题。Tools:目前,ChatGPT可以使用浏览器、运行代码等,类似人类使用计算器或电脑。上下文长度(Context length):模型的上下文长度从GPT-3的2k到GPT-4的32k,再到Gemini 1.5 Pro的100万以上。更长的上下文可以有效提升计算效率。Posttraining improvements:当前
17、的GPT-4通过后训练改进显著提升了能力,可以在推理评估中的表现大幅提高。Epoch AI 对一些技术(如 Scaffolding 和工具使用)进行了调查3,发现这些技术通常可以在许多基准测试中带来 5-30 倍的有效计算增益。METR(一个评估模型的组织)同样发现,通过优化相同的 GPT-4 基础模型,他们的代理任务性能得到了显著提升:从仅使用基础模型时提升了5%,到使用发布时的后训练 GPT-4 时提升了20%,再到今天通过更好的后训练、工具和代理脚手架,提升达到的近 40%。自于硬件设计的改进。多种大模型正在通过算法改进,计算成本下降与硬件设计已数十倍降低计算成本,而且这个趋势还在继续强
18、化。甚至可能看到更多基础性、类似 Transformer 的突破,获得更大的收益。未来3年到4年,相对于 GPT-4,预期算法效率将提高 到当前算法效率的10到1000倍。3 https:/epochai.org/blog/ai-capabilities-can-be-significantly-improved-without-expensive-retraining前言FOREWORD5.美国能源是否支持AI及大模型和带来的工业发展前言FOREWORD在AI时代,如何定义可持续发展的内涵与外延?人工智能(AI)正以惊人的速度革新多个领域,其应用不仅重塑传统行业,还为全球性挑战提供解决方案。
19、1.在能源领域,AI优化生产、管理和消费,提升效率与可靠性,减少浪费,提高可再生能源利用率。2.在应对气候变化方面,AI通过精准预测与分析,助力科学应对策略的制定,监测温室气体排放,评估政策效果,优化减排措施,并提供自然灾害预警。3.工业领域,AI推动工业4.0进程,实现生产智能化、自动化,提高效率,降低成本,优化供应链,精准生产计划,减少资源浪费。4.航天领域,AI技术在任务规划、飞行器控制、故障诊断与维护中提升精确性与安全性,加速科学发现和技术进步。AI的应用展现了其在解决全球性挑战、推动科技进步与提高生活质量方面的巨大潜力。AI与可持续发展”,试图为分析人工智能(AI)及其大模型技术在推
20、动全球可持续发展中的挑战与机遇提出分析与决策框架。通过八个层面构建了一个较全面的人机共生的分析框架,包括AI与气候变化、信息通信技术基础设施、全球数字身份系统、数据AI及大模型技术突破与发展,AI及大模型技术对气候变化与碳中和的机遇与挑战,AI及大模型技术能否支持包括具身智能技术突破的工业全面变革,和AI及大模型技术对航天探索的影响。三.AI与可持续发展展望:AI及大模型技术对能源领域、气候变化领域、工业领域、航天领域的挑战与机遇四、小结前言FOREWORD管理、人机交互界面、国家治理、民族认同以及价值观和道德伦理。特别是AI在实现碳中和、优化资源分配、支持人机互动技术设计和产品发展、以及在全
21、球治理中的重要性的分析,对AI与可持续发展议题做出中长期关键层面分析。对于短期及未来几年的AI与大模型技术是否可以突破的分析与判断中,强调了AI技术发展需要巨额投资,今年美国对AI的投资可能达1千亿美元。计算能力的显著提升和算法效率的大幅进步也将推动AI技术的快速发展。AI与可持续发展展望报告,作为“AI与可持续发展”的系列报告的第一份报告,探讨了AI在能源、气候变化、工业和航天等热点领域的应用,展示了AI在提升效率,支持科学决策和推动技术进步方面的巨大潜力。“AI与可持续发展”的议题的持续深入,需要跨学科合作,来适应快速变化的技术发展与环境变化。序言1PREFACE 1智能与绿色:迈向可持续
22、发展的人工智能新时代陶大程澳大利亚科学院院士在人类文明史的浩瀚进程中,科技的每一次跃迁都如同星辰闪耀,照亮了我们通往未来的道路。今天,我们正身处于一场前所未有的技术革命之中,在过去的十年中,人工智能(AI)技术经历了飞速的发展,推动着我们所处的数字世界不断向前迈进。AI不再仅仅是学术讨论中的概念或实验室中的技术原型,而是已经深深嵌入到我们日常生活和商业运作的方方面面。人工智能的历史可以追溯到20世纪50年代,那时,计算机科学家们开始尝试开发能够模拟人类智能的算法和程序。从最早的符号主义AI到20世纪80年代的专家系统,再到21世纪初的机器学习,AI的发展经历了数次变革。然而,随着数据量和计算资
23、源的不断增加,AI模型也逐渐从原本的“小而精”向“大而广”演进,以OpenAI的GPT(Generative Pretrained Transformer)系列为例,GPT-3,拥有1750亿个参数,能够生成极为逼真的文本,涵盖从技术文档到诗歌创作的各类内容。它不仅在NLP领域表现出色,还在跨领域应用中展现出非凡的潜力,例如代码生成、情感分析、甚至复杂问题的推理。在过去几年中,AI大模型领域不断涌现出新的研究成果和技术突破,GPT的发展可以视作AI大模型技术的缩影。GPT-1诞生于2018年,尽管其参数量仅为1.1亿,但已经展现出了通过自监督学习(Self-supervised Learnin
24、g)训练的强大能力。GPT-2在2019年发布,参数量增长至15亿,极大地扩展了模型生成文本的流畅度和一致性。真正令业界为之震撼的是GPT-3,它不仅在规模上实现了跨越式增长,其在多任务处理上的表现也让人们开始重新审视大模型的应用前景。如今,随着GPT-4的发布,AI大模型的能力得到了进一步的提升。GPT-4不仅在自然语言处理上超越了前代,其在多模态处理、情感理解、推理能力等方面也取得了显著进步。在AI大模型的飞速发展中,GPT的训练耗费引发了广泛关注和讨论。每次GPT模型的训练都需要庞大的计算资源,背后则是成千上万的高性能服务器昼夜不停地运转。这不仅带来了巨大的能源消耗,还产生了相应的碳排放
25、。这种资源消耗引发了许多人对AI技术在可持续发展背景下的适应性的质疑。举例来说,为了训练一个像GPT-3这样的大模型,不得不建立一个庞大的数据中心,在机房中,成千上万的服务器正散发着巨大的热量,冷却系统不断工作,以防止设备过热。这带来了一个挥之不去的问题:为了追求更强大的AI能力,是否正在以环境为代价?这些AI模型是否真的符合我们可持续发展的理念?在背后隐藏着人们对AI技术的深层次担忧。在现代社会,随着全球人口的增长和资源的不断消耗,环境保护和可持续发展已成为人类面临的最严峻挑战之一。面对气候变化、能源短缺、环境污染等一系列问题,传统的发展模式已难以为继。在这场AI技术与可持续发展的博弈中,如
26、何找到平衡点,将成为未来发展的关键。一方面,研究人员开始探索更为环保的训练方法,如利用可再生能源供电、优化算法以减少计算需求,以及开发更加高效的硬件,以降低能耗。另一方面,在当前发展模式下,寻找新的技术手段以推动全球经济和环境的可持续发展,已成为各国政府、企业和学术界的共同目标。在这一背景下,人工智能作为新兴技术的代表,以其强大的数据处理能力和创新的解决方案,正逐步成为推动可持续发展的关键引擎,和其广阔的可持续发展应用前景相比,其本身训练和推理的消耗相对微不足道。序言1PREFACE 1序言1PREFACE 1AI的广泛应用在各个领域展现出巨大的潜力,尤其是在能源管理、环境保护、农业生产和城市
27、规划等领域。通过智能化的决策支持系统,AI能够有效优化资源配置,降低能源消耗,减少碳排放,从而实现环境与经济的协调发展。例如,在能源领域,AI可以通过智能电网技术,实时监测和调整能源的供需平衡,提高能源利用效率,减少浪费和污染。此外,AI在环境监测和污染治理中的应用,也为环保工作注入了新的活力。通过卫星遥感数据和智能算法,AI能够精准预测气候变化趋势,并提出相应的应对措施,帮助政府和企业制定更为科学合理的环保政策。然而,AI在促进可持续发展方面的潜力远不止于此。随着技术的不断进步,AI将更加深入地融入人类社会的各个层面,助力全球实现更高水平的可持续发展。未来,AI有望在资源管理、生态保护、绿色
28、金融等方面发挥更大的作用,为构建一个更健康、更美好、更可持续的地球提供强有力的技术支撑。我们期待通过报告的分享,引发更多的思考与讨论,共同探索AI与可持续发展相结合的无限可能。在这场关乎全人类命运的伟大征程中,AI不仅是一个工具,更是一种理念,一种推动社会进步与环境保护并重的新思维模式。未来的可持续发展道路,必然是在科技与生态的平衡中寻找最优解。我们坚信,AI将为全球可持续发展目标的实现带来前所未有的机遇,推动我们迈向一个更加繁荣、健康与可持续的未来。展望未来,AI大模型的发展将继续遵循规模化、精细化和多样化的路径。一方面,随着计算资源的进一步提升,模型规模还将持续扩大,性能也将更加出色。另一
29、方面,AI模型的训练将更加注重效率和能源消耗,绿色AI的概念逐渐得到推广。在即将到来的AI时代,我们面对的不仅是技术的飞跃,更是对人类智慧和想象力的全新挑战。正如每一次科技革命一样,这场变革将深刻影响我们的生活方式、工作方式和思维方式。让我们以开放的心态迎接这一挑战,探索技术带来的无限可能,共同书写属于我们的智能时代新篇章。序言2PREFACE 2董朝阳香港城市大学电机系主任,教授领域,AI技术可以通过分析气象数据,预测太阳能发电量,并根据预测结果优化光伏发电设备的运行。在风能发电中,AI能够实时调整风机状态,最大化利用风能资源。这些技术提高了新能源的利用效率,加速了传统能源向可再生能源的转型
30、。同时,AI在能源规划和政策制定中提供了科学依据,帮助政府和企业制定更合理的能源政策,推动碳中和目标的实现。然而,AI的潜力远不止于能源领域。在全球应对气候变化的过程中,AI已成为关键工具。气候预测模型正变得更加复杂和精准,依靠AI对海量气象数据的分析,科学家们能够更好地理解气候变化的规律,并制定更有效的应对策略。AI不仅能预测极端天气事件,还能模拟不同政策对全球气候的长期影响,从而帮助决策者做出明智的选择。同时,AI在气候变化研究中的应用也推动了新能源技术的创新,进一步减少了全球碳排放。在工业制造领域,AI也正在重新定义生产力。通过多模态大模型的应用,AI不仅能够优化生产流程,还可以在研发、
31、设计、供应链管理等多个环节中发挥作用。AI在工业领域的应用已经极大地提升了生产效率和产品质量,同时减少了资源的浪费。未科技赋能,迈向可持续发展的新征程序言2PREFACE 2来,随着AI技术的不断进步,工业智能化将迈向新的高度,传统的制造流程将被更加灵活、高效、智能的生产方式所取代。这种变革不仅有助于提升企业的竞争力,也对实现全球的可持续发展目标起到了积极的推动作用。航天领域同样受益于AI技术的快速发展。通过大模型的应用,AI在航天任务的规划、执行和数据分析中扮演着越来越重要的角色。从优化火箭发射的轨迹,到精确预测太空天气,AI正在帮助航天工程师们以更高的效率和更低的风险完成复杂的任务。更重要
32、的是,AI技术还在推进太空探索的步伐,通过对大量太空数据的分析和处理,AI有望揭示宇宙中更多未解之谜,为人类的未来探索铺平道路。本报告深入探讨了AI如何在多个维度上推动可持续发展。AI通过提升资源利用效率,有助于减少环境负担;在环境监测与保护中,AI发挥着不可替代的作用。通过对生态环境数据的实时监测和分析,AI技术能够帮助我们更好地理解环境变化的趋势,从而采取更加精准和有效的保护措施。AI在社会领域的应用,如智能化的教育系统和个性化的医疗服务,正在不断提升社会福利和人类福祉。这种技术进步不仅是为了提高生活质量,更是为了实现社会的公平与正义,使得每一个人都能够从中受益。当然,AI在可持续发展中的
33、应用并非没有挑战。随着技术的快速发展,数据隐私和安全问题日益突出。此外,AI技术在应用过程中的不确定性和风险,也需要在开发和使用中保持高度警觉。然而,正如每一次技术革命一样,挑战的背后往往隐藏着巨大的机遇。展望未来,AI在可持续发展中的潜力无疑是巨大的。随着技术的进一步成熟,AI不仅将继续在能源、工业、航天等领域发挥关键作用,还将扩展到更加广泛的社会经济领域,推动全人类迈向一个更加智能、高效、环保的未来。AI的发展将进一步加速全球社会的数字化转型,带来新的经济增长点和就业机会,同时也将促使各国在可持续发展领域展开更加深入的合作与竞争。在这个瞬息万变的时代,AI作为技术革命的驱动力,不仅是解决当
34、前挑战的有力工具,更是我们探索未来、实现梦想的重要伙伴。它将重新定义人类与自然的关系,促进生态文明的建设。期待在AI的助力下,我们能够共同迎接一个更加美好、更加可持续的未来,一个人与自然和谐共处的新时代。序言2PREFACE 2序言3PREFACE 3拥抱AI时代:释放创造力,让思考更深远翟永平腾讯碳中和高级顾问记得从上个世纪八十年代开始,因为广播、影视、纸媒、书籍等媒介趋于多元化,令人应接不暇,那时就常听到这是个“信息爆炸”的时代。此后随着互联网技术和应用的不断快速发展和迭代,毫不夸张的说,我们已经处于“信息大爆炸”的时代。“信息爆炸”乃至“信息大爆炸”本身不是坏事,怕就怕知识碎片化,使得系
35、统性学习变得更加困难;更怕真伪难辨,被片面信息误导。过去很长时间以来,我都保持一个每天阅读两小时专业文献的习惯,并且做笔记、找脉络、看趋势,通过分析思考作出自己的判断。现在,人工智能(AI)来了:我今天的阅读清单上增加了这份由腾讯研究院与香港中文大学精心编写的报告AI与可持续发展展望。这份报告结构清晰、内容详实,不仅仅局限于单一领域,而是探讨AI技术能源、气候变化、工业和航天等多个关键领域的应用。报告介绍了基于AI的自动化、预测性维护和智能决策支持系统,这些系统能够提高生产效率、降低运营成本,为决策者提供科学依据,体现了AI在提升工业运营效率和可持续性方面的实用价值。报告通过多个具体案例,比如
36、AI在智能电网、预测性维护、故障诊断等方面的应用,展示了AI技术的实际效果和价值。报告还涉及了航天领域,探讨了AI在自主飞行、卫星数据分析和空间探索等方面的应用。我曾长期在亚洲开发银行工作,特别关注AI在气候金融和可持续发展方面的应用。读到报告关于AI赋能气候金融的部分,感到眼前一亮。报告详细阐述了AI在气候金融方面的应用,包括数据分析和风险评估、个性化金融产品设计、资本流动和融资渠道的开拓、审批流程的简化等方面。AI技术通过高效处理和分析碳排放数据,评估环境风险,确保资金流向环保项目,对于金融行业在应对气候变化方面的决策和投资具有指导意义。报告也直面AI扩大应用可能面对的挑战,特别是AI自身
37、能耗快速增加的问题。对此,报告提出了多种应对策略,包括软硬件协同创新,结合应用场景需求进行全栈设计和优化提高计算效率。同时,大力推动使用可再生能源,优化数据中心的能源供应结构,推动AI的可持续发展。读罢AI与可持续发展展望这份报告,真切感受到AI技术给我们的社会方方面面带来的巨大变化,也包括我们的工作和生活方式的改变。进入AI时代就要拥抱AI,借助AI工具来学习,现在自己每天阅读的那些专业资源的不需要两个小时了。但是,我认为再强大的AI也不会代替我们的思考和创造。换句话说,AI让人类有更多的时间来深度思考,可以释放更多的创造力推动社会的可持续发展。序言3PREFACE 3目录CONTENTS1
38、p12p4背景介绍 BACKGROUNDNFORMATION能源 ENERGY3p14气候变化 CLIMATE CHANGE4p265p40工业 INDUSTRIAL航天 SPACEFLIGHT6p61总结与展望 SUMMARY AND PROSPECT2.1 丨引言2.2 丨AI在能源行业的应用现状2.3 丨AI推动能源转型2.4 丨AI增强能源安全2.5 丨总结与展望2.6 丨参考文献4.1 丨引言4.2 丨AGI技术及大语言模型的能耗分析4.3 丨工业领域具身智能的能耗分析4.4 丨能源系统对工业领域AI替代人工的 支撑能力分析4.5 丨AGI对劳动力市场的影响4.6 丨讨论与展望5.1
39、 丨引言5.2 丨星际生活5.3 丨星际贸易5.4 丨航天领域的AI应用5.5 丨总结与展望5.6 丨参考文献3.1 丨引言3.2 丨人工智能协助区域级碳监测3.3 丨人工智能协助行业碳监测3.4 丨人工智能协助企业级碳计量3.5 丨多模态大模型集成分析环境表现3.6 丨气候金融3.7 丨总结与展望3.8 丨参考文献背景介绍01背景介绍BACKGROUND NFORMATION报告结构1.背景介绍6.总结与展望2.能源2.1 引言2.2 AI在能源行业的应用现状2.3 AI推动能源转型2.4 AI增强能源安全2.5 总结与展望3.气候变化3.1 引言3.2 人工智能协助区域碳监测3.3 人工智
40、能协助行业碳监测3.4 人工智能协助企业级碳计量3.5 多模态大模型集成分析环境表现3.6 气候金融3.7 总结与展望4.1 引言4.2 AGI技术及大语言模型的能耗分析4.3 工业领域具身智能的能耗分析4.4 能源系统对工业领域AI替代人工的支撑能力分析4.5 AGI对劳动力市场的影响4.6 讨论与展望5.1 引言5.2 星际生活5.3 星际贸易5.4 航天领域的AI应用5.5 总结与展望AI图 1.1 报告总结构4.工业5.航天02背景介绍BACKGROUND NFORMATION在能源领域,AI通过优化能源生产、管理和消费,提升了系统的效率和可靠性。智能电网、预测性维护和能源储存优化等A
41、I应用,有效降低了能源浪费,提高了可再生能源的利用率。此外,AI在能源交易市场中的应用,通过实时数据分析和预测市场趋势,帮助实现了更为灵活和高效的能源分配。人工智能(AI)技术正在以惊人的速度革新多个领域,其应用不仅改变了传统行业的运作方式,还为应对全球性挑战提供了新的解决方案。能源气候变化是当今全球面临的重大挑战之一,AI在这一领域的应用也展现出巨大潜力。通过分析气候数据,AI可以更准确地预测气候变化趋势,帮助制定更加科学的应对策略。此外,AI技术在监测温室气体排放、评估气候政策效果、优化减排措施等方面发挥着重要作用。AI驱动的智能系统还可以实时监控自然灾害,提供早期预警,从而减少灾害带来的
42、损失。气候变化在工业领域,AI的应用推动了工业4.0的进程,实现了生产过程的智能化、自动化和优化。通过机器学习和数据分析,AI可以提高生产效率,降低运营成本,优化供应链管理。智能制造、机器人技术、质量控制和设备维护等领域的AI应用,使得生产线更加灵活高效,产品质量得到提升。此外,AI还可以通过分析市场需求和生产数据,帮助企业制定更为精准的生产计划,减少资源浪费。工业航天领域作为高技术和高风险行业,AI的引入同样带来了深刻变革。AI技术在航天任务规划、飞行器控制、故障诊断和维护等方面的应用,提高了任务执行的精确性和安全性。例如,AI可以通过分析大量飞行数据,预测潜在故障,提前进行维护,从而延长飞
43、行器的寿命。自动驾驶技术、无人探测器和空间站管理等AI应用,使得航天探索更加高效和安全。此外,AI在处理和分析从航天器传回的大量科学数据方面也发挥了关键作用,加速了科学发现和技术进步。航天03背景介绍BACKGROUND NFORMATION能源04能源ENERGY图 2.1 AI助力能源发展结构图AI助力能源发展2.1 引言能源转型能源安全2.2 AI在能源行业的应用现状AI2.3 AI推动能源转型2.3.1辅助材料发现2.3.2 推动能源市场化2.4 AI增强能源安全2.5 总结与展望2.4.1提供实时信息感知与预测2.4.2辅助复杂系统控制与运行2.2.1能源生产2.2.2 能源输送2.
44、2.3 能源消费2.1 引言随着全球对可持续发展和减少环境影响的关注日益增加,能源行业正处于一个关键的转型期。近年来,能源供应紧张和价格飙升引发了新一轮的能源危机,特别是在电力、煤炭和天然气领域。为应对这些挑战,各国政府和国际组织正在加速推动能源的绿色低碳转型,旨在减少对化石燃料的依赖,同时提高能源系统的可持续性和安全性。为深入推进能源革命,加快规划建设新型能源体系,中国已建成了全球规模最大的清洁发电体系,其中非化石能源的发电装机容量已超过50%。同时,中国政府强调,需要全面推动能源消费革命、供给革命、技术革命和体制革命,以建立一个清洁低碳、安全高效的能源系统。这不仅关系到碳达峰和碳中和目标的
45、实现,也是推动经济社会全面绿色转型的关键措施。能源转型过程中,需要重点强调能源安全,在保障能源安全的前提下有序推进能源绿色低碳转型,加强转型中的风险识别和管控。在加快形成清洁低碳能源可靠供应能力基础上,逐步对化石能源进行安全可靠替代。这意味着新型能源系统不仅要能够应对供应中断、价格大幅波动的情况,还应当能够应对极端天气、重大事故、网络攻击等风险事件的冲击。考虑能源安全进行能源转型,加快构建清洁低碳、安全高效的能源体系,促进能源高质量发展和经济社会发展全面绿色转型,为科学有序推动如期实现碳达峰、碳中和目标和建设现代化经济体系提供保障。在完善能源绿色低碳转型过程中,AI技术因其对海量复杂多维数据的
46、高效处理能力、优异的自适应与学习能力而被广泛应用于从生产到消费的整个能源链,推动了能源系统的高效、安全转型。特别地,近几年AI的高速发展让我们看到了AGI的实现可能性。AGI所具备的认知多功能性、自主学习能力以及推理解决问题的能力,将进一步助推能源转型进程,增强能源安全,为形成绿色、低碳、高效的能源体系提供强劲助力。05能源ENERGY2.2 AI在能源行业的应用现状2.2.1 AI在能源生产方面的应用为阐明AI在推动能源转型和增强能源安全方面的潜在作用和影响,本章节内容按照以下结构展开叙述:2.2章节阐述当前AI技术在能源行业的应用现状,接着,在2.3章节与2.4章节中,我们对未来AI在助力
47、能源转型、增强能源安全方面的可能性进行展望,最后在2.5节中总结本章内容。AI技术是计算机科学的一个分支,旨在创建可以模拟人类智能行为的软件。通过算法和大量数据训练,AI可以学习到现实中某些特定场景的复杂模式和规律。同时,AI可以快速处理和分析庞大的数据集,高效准确地完成某些特定的复杂和重复的任务。AI所具备的这些特点使其可以有效解决能源领域的潜在挑战,提高能源的使用效率。目前,AI已经被广泛应用于能源的生产、输送以及消费各环节。同时,AI的迅猛发展也将为能源行业的进步再添助力。本节将介绍当下AI在能源领域的应用情况,为展望AI在能源领域的未来应用进行铺垫。在当今能源生产领域,AI的运用正在逐
48、渐提高能源产量和效率。AI通过智能分析和预测,对降低能源生产成本、优化开采分配以及提高生产效率起到了不可忽视的作用。尤其是在风能与太阳能的利用上,以及在油气储量的计算与开采中,AI的应用正推动着能源行业的现代化和智能化发展1。在对新能源的利用上,以风电机组与光伏为例,AI的运用主要体现在三个方面。通过使用多种神经网络架构,目前行业内已经能够实现对风力和光伏发电量相对精确的预测。相对准确的预测数据极大地提高了发电企业的在前期选址策略的科学性,以确保前期投资的最优化2。AI提供的预测数据将直接影响发电机组运营策略的制定,对于寻找最优的机组组合与降低运营成本的策略十分重要,可以显著提升风电场的运行效
49、率和能源产出4。此外,AI可以辅助风力发电系统的控制器调整,对风力发电系统进行健康监测,通过神经映射来识别故障模式,通过智能控制与辅助决策,保障风电机组的最优生产5。远景能源设计的一款基于AIoT技术风机的可以通过自我学习、自我进化、适应不同环境的能力。这款风机在机器学习的语境下,随着数据厚度的加深,使得风场的发电量反而有了上升的可能6。AI在传统的能源领域,例如油气开采的应用上正日益成熟。首先,在油气储量计算方面,AI技术通过分析大量的地质和生产数据,不仅提高了储量评估的准确性,还能分析地震数据和其他地质信息,以识别潜在的油气藏。种类繁多的机器学习模型,譬如支持向量机(Support Vec
50、tor Machines)和人工神经网络(Artificial Neural Network),在提高油气产量预测的精确度方面的极大潜力7。合适的模型与数据集可以优化油气田的开发策略,有潜力将石油产量从6%提高到8%8。其次,AI技术的结合催生了智能油田的概念,通过数字化仪表和基于网络与模型的知识交换来优化油田的开采生产过程9。在生产过程中通过AI实现自动化与辅助决策,这不仅提高了作业效率,06能源ENERGY还能降低成本。此外,AI在提高油气开采稳健性上大有可为。通过预测性维护和状态监测,能源开发公司能够预防设备故障,减少意外停机时间,从而降低成本并提高生产力。据外网报道,Aker BP 与
51、 Spark Cognition 的合作案例展示了AI在预测性维护中的应用,通过机器学习技术提前预警潜在故障,显著提高了能源生产效率10。AI在预测和防止油气管道故障方面发挥着关键作用1。AI可以利用大数据分析技术来识别管道系统中的潜在故障迹象。通过监测和分析传感器数据、运行日志、温度、压力和流量等参数,AI可以建立预测模型,识别管道系统中的异常模式,并预测可能的故障。通过历史数据来识别管道系统中的潜在风险和故障模式。还可以通过安装摄像头和使用计算机视觉技术,监测管道系统的外部和内部情况。这种技术可以帮助检测管道表面的腐蚀、裂缝或其他损坏,并及时采取措施修复。AI可以利用GIS数据和地形信息,
52、结合管道所需的最优路径,进行路径规划11。通过分析地形、土壤类型、地质特征等因素,AI可以确定最佳的管道敷设路径,以减少对环境和生态系统的影响,并利用实时传感器数据、天气信息、交通情况等数据,动态调整管道路径。这种实时数据分析可以帮助管道运营商更好地应对突发事件和环境变化,确保管道系统的安全和稳定运行。AI可以利用机器学习算法和数据分析技术,对管道系统中的潜在风险进行预测和管理。通过识别风险因素,并采取预防措施,可以降低管道系统遭受外部威胁的风险,通过整合多源数据,包括传感器数据、气象数据、地质数据等,进行综合分析和预测12。通过综合考虑多种因素,可以更准确地评估管道系统的运行状态和风险,提高
53、油气管道网络的韧性。AI在能源输送中展现出强大的潜力。例如大地量子依托自主研发的“地球时空数据云平台”,基于“遥感+AI”技术,提供全覆盖、准实时、高精度的常态化安全运行监测和预警服务,为油气管道安全运行提供智能化、标准化的稳定服务。华为推出了单端检测距离达50km的 DAS 设 备 Huawei OptiXsenseEF3000,可以被广泛应用到油气管道、周界防护等多种基于光纤的分布式振动监测场景。在电力领域,AI已成为智能电网的核心组成部分14,其对于预测消费者消费模式并相应管理能源分配具有不可或缺的作用。特别是,长短期记忆网络(LSTM)被广泛用于学习和预测能源需求,从而实现供应与需求之
54、间的有效平衡,确保能源分配的高效性。根据瑞士公司ABB报道,该公司开发了一个AI支持的能源需求预测应用,该应用不仅帮助客户做出更精确的能源管理决策,还允许商业建筑经理通过利用时间使用率优惠避免高峰时段的电费15。在石油和天然气行业,AI的应用日益增多,特别2.2.2 AI在能源输送方面的应用2.2.3 AI在能源消费方面的应用07能源ENERGY是在用户行为分析和需求预测方面。AI可以通过分析历史和实时数据来预测未来的供应链需求16-17。AI技术如神经网络、回归分析和时间序列预测等,被用来优化库存水平并防止过剩或短缺的产生。根据路透社报道,壳牌公司便是一个典型例子,他们利用AI来预测未来的石
55、油和天然气需求,从而优化库存管理并降低成本18。AI在煤炭行业的应用同样显示出其在预测和优化能源消耗方面的潜力。AI通过分析煤炭需求数据,可以预测市场趋势和价格变化,进而调整采矿作业和能源消耗,以适应市场需求19。例如,山东能源集团发布的新闻中提到,其与华为共同开发的盘古矿模型利用AI分析采矿过程中的各种数据,预测未来的需求趋势,并据此优化采矿作业,这不仅提高了资源利用效率,还降低了运营成本20。低碳能源转型中的一个重要主题是降低能源的生产成本,提高能源生产效率。一方面,新型材料的高效发现可以助推能源生产流程的优化,带来能源生产成本的大幅降低;另一方面,充分的市场竞争和活跃的能源交易系统,是促
56、进能源生产系统降低成本,提高效率的关键方法。本节将具体讨论AI在降低能源成本、推动能源转型方面的应用前景。在能源转型的进程中,为了能够降低能源成本,发现并采用全新的能源材料至关重要。其可以在能源转型的多领域得到应用,包括电池储能材料、新式发电机材料和高效催化剂材料等。引入全新的能源材料有助于在各个方向上提高能源效率、降低制造和运营成本,并增强能源系统的灵活性。然而,传统的材料发现往往需要耗费大量时间和成本,同时存在成功率低和数据利用不足等问题,面临复杂性和不确定性的多重挑战。一方面,其从理论预测出发,到材料实际投产应用,整个过程往往耗时十数年,且实验合成和表征过程需要消耗大量人力和物力,成本高
57、昂。此外,考虑到材料科学涉及众多变量和参数,理论模型往往难以全面描述实际情况,新材料发现通常是一个高度试错的过程,不仅成功率较低,同时也难以获得最优结果。随着AI的发展,这一难题有了切实可行的解决方案。在人工智能,特别是LLM的帮助下,材料发现得到了多方面的辅助。首先,LLM可以对文献和数据进行分析和挖掘,通过快速总结大量文献,从现有数据库中提取有效信息,帮助发现潜在的材料特性和应用。其次,利用生成模型,AI可以预测和生成具有特定性能的新材料结构。例如,通过设计分子结构实现特定的光学、电学或机械性质。AI还可以进行反向设计,根据给定的材料性能要求,帮助研究人员设计或优化材料的结构和成分。此外,
58、基于已有数据和机器学习模型,AI可以预测新材料的性能,如强度、导电性和热稳定性等。这不仅可以优化实验设计,减少试验次数,还能大大缩短实验和计算模拟的时间和成本。总体而言,AI的应用极大地提高了材料发现的效率和成功率,为能源转型提供了强有力的支持。2.3 AI推动能源转型2.3.1 AI辅助材料发现08能源ENERGY在能源转型过程中,能源交易市场化是实现能源行业效率和成本优化的重要途径。通过竞争,能源市场可以更有效地分配资源,降低成本,同时确保利益合理分配和最大化社会福利。另外,从相对可控的化石能源向相对不可控的可再生能源的转型,需要我们建立更灵活且高效的市场环境,实现稳定的能源供应。然而,由
59、于能源行业是社会生活中的核心行业之一,能源市场会受制于包括但不限于国际政治形势、气候变化等诸多不确定性因素的复杂影响,导致能源供需关系难以预测。另一方面,能源交易还受到市场主体的理性与非理性行为决策的影响,导致能源交易结果的不确定。因此,为建立一个灵活、可持续的能源市场体系,有必要对复杂社会环境下的能源市场进行准确建模与仿真,模拟不同场景下的能源市场交易过程,为市场体系的建设完善提供支撑。在能源交易市场中,LLM等新兴AI技术可以帮助提高对市场复杂外部性信息的处理能力,助力灵活高效的市场体系建设与完善。一方面,以LLM为核心的新兴AI技术能够处理和分析包括文字、图像和音频等多种格式的海量复杂多
60、元数据,这使得市场参与者可以即时获取并理解市场的最新动态,如能源需求的变化、能源价格趋势和政策变动等,从而可以快速调整自己的策略,提高市场主体灵活性,帮助市场主体适应市场的变化,实现利益最优。另一方面,以LLM为核心的新兴AI技术还可以作为市场代理应用于市场仿真领域。通过对如能源、经济等特定的领域知识的学习,可以提高计算机代理对该领域知识的理解深度,结合LLM的泛化能力和逻辑思维,计算机代理将具备模拟真实市场主体行为的能力,真实反映市场主体对价格变化的敏感性,模拟不同偏好的市场主体在不同政策和经济环境下的市场反应,做出更真实的需求响应行为,实现现实能源市场的高精度仿真,帮助市场运营者更好地了解
61、市场的可能动态,从而设计更有效的市场机制,制定相关政策。由于风、光等可再生能源具有强波动性、高不确定性的特点,增大了能源稳定持续供应的难度,使得在低碳能源转型过程中保障能源安全成为难点。克服可再生能源的不确定性带来的挑战,重点在于对能源供求情况的准确预测与对能源输送的灵活调节能力,建立灵活可靠的强韧性能源供应网络。本节将具体讨论AI技术在提高能源供应网络韧性、增强能源安全方面的应用前景。在能源领域,准确的预测可以促进供需平衡、优化资源分配、降低运营成本、提升能源管理和促进可再生能源利用。许多研究聚焦于能源领域的预测问题,其中负荷预测和新能源发电预测分别针对电力需求和可再生能源发电量,提供了关键
62、的数据支持和决策依据,从而确保能源系统的高效、稳定2.4 AI增强能源安全2.3.2 AI推动能源市场化2.4.1 AI提供实时信息感知与预测09能源ENERGY和可持续运行。一方面,负荷预测作为传统的能源领域预测任务,可以帮助运营商制定合理的电力调度计划,确保电网稳定运行,并为需求响应计划提供支持,通过调整用户需求来平衡电网负荷。另一方面,随着风能、太阳能等可再生能源装机容量的提高,能源系统的复杂性和不确定性也在增加。新能源发电预测可以更好地整合可再生能源,确保电网的稳定运行,帮助电力调度中心制定合理的调度计划,提高新能源的利用率。近年来,大语言模型,如GPT-4和其他基于Transform
63、er架构的模型,具备强大的自然语言处理和生成能力,受到了广泛的关注,尽管它们主要用于处理文本数据,LLM也能在能源预测领域发挥重要作用。同之前的深度学习相比,语言模型可以处理并融合不同类型的数据,包括以气象报告、新闻文章、技术文档和社交媒体内容在内的文本数据和卫星云图等在内的图片数据等,大语言模型可以处理并融合这些不同类型的数据,而这其中就可能包含对能源需求和供给有影响的重要信息。具体而言,大语言模型可以在下面几个方面较传统AI模型有所改进,例如在自然灾害方面,通过实时监控和解析有关地震、洪水和风暴等自然灾害的报道,LLM可以预测这些事件对能源基础设施的影响,并提供预警信息;LLM可以实时分析
64、政府政策的变化,如环保法规的实施或能源补贴的调整,评估其潜在影响;此外,重大的社会事件(如大型体育赛事、政治活动或突发的公共卫生事件)也会显著影响能源需求,LLM可以实时跟踪这些事件的发展,分析其对能源需求的潜在影响;最后,通过整合和分析实时天气预报和用电记录等,LLM可以调整负荷预测,帮助电网公司优化电力调度。大语言模型在信息获取和处理方面的优势,能够显著提升能源预测的准确性和及时性。通过读取和理解网络信息,LLM可以实时跟踪和分析各种影响能源市场的因素,提供准确的预测和决策支持。这不仅有助于能源管理部门和企业应对复杂多变的市场环境,还能提高能源利用效率,推动能源行业的可持续发展。以AI为主
65、的新型技术正在深刻改变能源系统,在能源的生产、运输、分配和供给环节通过预测性维护、优化、安全等多个角度推动数字化转型。这部分将以电力系统为例,具体阐述AI在其中的可能应用。电力系统运行中,调度员通常需要根据实时负荷偏差,通过操作票对发电机组、线路等设备进行人工调度修正。随着人工智能的不断进步,许多调度步骤可以结合以LLM为代表的新型AI技术来提高效率和准确性。在电力系统调度时,调度员通常以事故(或称扰动,小至如负荷偏差等高频率低影响扰动的发生,大至如发电机故障、线路短路等低频率高影响事故的发生)发生的时间为基准,将调度动作进一步划分为事前、事中、事后三个阶段的控制与响应。以下从事前、事中、事后
66、三个阶段探讨AI的作用,分别对应风险预测、实时响应到事故后分析的全过程。2.4.2 AI辅助复杂系统控制与运行10能源ENERGY在事前阶段,即,电力系统处于稳定正常运行阶段时,AI的应用包括智能成票和业务场景生成等。在智能成票方面,AI可根据实时系统状态和预定的工作任务,自动编制出符合要求的操作票,解决目前依赖人力的流程步骤繁琐、核对量大等痛点。值得注意的是,LLM在写作辅助方面已表现出强大的上下文生成和泛化能力2122。经过特定任务微调后,LLM可以生成规范化的业务操作票,还可以利用检索增强生成(Retrieval-Augmented Generation,RAG)技术来提高生成结果的准确
67、性。在业务场景生成方面,AI可以自动识别或预测当前电力系统的状态和需求,从而生成最适合当前条件的操作场景。通过分析现货市场等系统的数据,AI能够识别系统的运行状态或潜在问题,并提出预警和操作建议,包括计划停复电、断面控制以及事故处理方法等。在事中阶段,即,电力系统正在发生故障时,AI的应用主要包括电力系统故障诊断和系统恢复等。在故障诊断中,以设备故障诊断为例,传统方法主要依赖感应数据进行故障类型识别。然而,不同类型设备的监测数据和故障诊断方法差异较大,且数据量有限,加之环境、天气等外部因素难以全面采集,使得提出一个高效且广泛适用的算法极具挑战性。而LLM凭借其强大的泛化能力,有望解决这些难题。
68、在小样本环境下,通过特定任务微调,可以利用LLM获取适用于不同设备的诊断模型。此外,LLM还能够基于诊断结果和系统状态自动生成故障诊断综合报告,从而减少后续决策的时间。在系统恢复方面,LLM可显著辅助输电和配电系统的恢复。例如,LLM可以根据调度员的需求,迅速生成配电系统恢复方案,并对输电网和配电网恢复方案进行安全综合评估。在维修过程中,LLM还可以通过语音和视频的方式,对现场维修人员进行操作指导和监督,确保操作的安全性和专业性。在事后阶段,即,电力系统从故障中恢复后,AI的应用主要包括系统恢复的状态辨识和调控策略等。在事后恢复阶段,快速而准确地辨识系统状态是确保电力系统平稳恢复的关键。传统的
69、状态辨识方法依赖于人工分析和经验判断,既耗时又容易出错。而 AI,尤其是LLM,能够通过分析包括系统日志、调度电话录音、调度票等多模态信息,快速识别出系统的异常状态。例如,通过分析系统日志,AI可以检测到异常事件的发生和影响范围;通过对调度电话录音的分析,AI可以评估调度员的反应和处理情况,从而判断系统的当前状态。此外,LLM还可以从调度员的记录和反馈中提取关键信息,提供对系统状态的综合评估。而在调控策略方面,基于历史数据、已知调控策略和对调度员行为的分析和评估,AI可以识别操作中的不足之处,提出改进建议,从而优化调控流程和策略。复杂社会环境下的低碳能源转型会受到能源行业内部环境,以及能源相关
70、行业,如交通、环境等外部环境的种种不确定性的干扰与影响。针对能源安全为前提下的能源转型所面临的挑战,本章节首先总结了AI在能源生产、输送和消费全链条的先进2.5 总结与展望11能源ENERGY应用,突出了AI在处理能源领域海量复杂数据时的优势。接着,结合近几年AI发展的新趋势,考虑泛化性更强、信息处理能力与逻辑推理能力更强的大型语言模型等新兴AI技术的巨大优势,报告进一步展望了AI在推动能源转型、增强能源安全方面的应用前景。具体地,报告展望了AI通过辅助材料发现、推动市场化进程推动能源转型进程,以及通过结合实时信息进行时间序列预测、辅助复杂系统运行等方法增强能源安全。通过本章内容,报告初步揭示
71、了AI在能源领域的巨大潜能,展望AIGC以辅助清洁能源供应的方式为人类社会共建绿色地球做出贡献,建设美好未来。1 周孝信,陈树勇,鲁宗相,等.能源转型中我国新一代电力系统的 技 术 特 征 J .中 国 电 机 工 程 学 报,2 0 1 8,3 8(07):1893-1904+2205.DOI:10.13334/j.0258-8013.pc-see.180067.2 Sunil Kr.Jha,Jasmin Bilalovic,Anju Jha,Nilesh Patel,Han Zhang.Renewable energy:Present re-search and future scope
72、of Artificial Intelligence.Re-newable and Sustainable Energy Reviews,2017,77,297-317.https:/doi.org/10.1016/j.rser.2017.04.0013 J.T.Dellosa and E.C.Palconit,Artificial Intelli-gence(AI)in Renewable Energy Systems:A Con-densed Review of its Applications and Techniques,2021 EEEIC/I&CPS Europe,Bari,Ita
73、ly,2021,pp.1-6,doi:10.1109/EEEIC/ICPSEurope51590.2021.9584587.4 Chen Zhang,Tao Yang.Optimal maintenance plan-ning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-II.Renew-able Energy,2021,164,1540-1549.doi:10.1016/j.-renene.2020.10.125.2.6 参考文献5 K.Bose,Artific
74、ial Intelligence Techniques in Smart Grid and Renewable Energy SystemsSome Example Applications,inProceedings of the IEEE,vol.105,no.11,pp.2262-2273,Nov.2017,doi:10.1109/-JPROC.2017.2756596.6 张子瑞.这家公司让风机变得更“聪明”.2019-07-09.厦门 大 学 能 源 学 院.h t t p s:/e n e r g y.x m u.e d u.c n/i n-fo/1013/1433.htm7 An
75、irbid Sircar,Kriti Yadav,et al.Application of ma-chine learning and artificial intelligence in oil and gas industry.Petroleum Research,2021,6,379-391.https:/doi.org/10.1016/j.petrores.2021.03.0028 Sachin Choubey,G.P.Karmakar.Artificial intelli-gence techniques and their application in oil and gas in
76、dustry.Artificial Intelligence Review,2021,54,3665-3683.https:/doi.org/10.1007/s 10462-020-09 935-1 9 Hamzeh H(2016)Application of big data in petro-leum industry.Department of Electronics and Comput-er Engineering Istanbul Sehir University hamedhamze-hstd.sehir.edu.tr10 Aker BP Uses SparkCognition
77、AI Solution to Accel-erate Productivity.Offshore Technology News,March 2 7,2 0 1 9.h t t p s:/w w w.o ffs h o r e-t e c h n o l o- 张继研,邴兆虹,等.人工智能在故障诊断中的应用研究J.辽宁大学学报2012,39(02):231-237.12 丛瑞,冯骋,沈晨,等.油气管道数字孪生技术应用J.油气田地面工程,2022,41(10):108-113.13 徐磊,侯磊,李雨,朱振宇,雷婷.机器学习在油气管道的应 用 研 究 进 展 及 展 望 J .油 气 储 运,2
78、0 2 1,4 0(2):138-145.14Aguiar-Prez Javier Manuel,Prez-Jurez Mara ngeles.An insight of deep learning based demand forecasting in smart gridsJ.Sensors,2023,23(3),1467.https:/doi.org/10.3390/s2303146712能源ENERGY15 ABB.(2019,November 6).ABB uses AI to revolu-tionize energy management.https:/ Seyedan Mahy
79、a,Mafakheri Fereshteh.Predictive big data analytics for supply chain demand forecast-ing:methods,applications,and research opportuni-tiesJ.Journal of Big Data,2020,7(53),Article 53.https:/ Colin Masson.Industrial AI:25 use cases for sus-tainable business outcomesJ.ARC Advisory Group,2023,technology
80、trends.https:/ Reuters.(2023,May 17).Shell to use new AI tech-nology in deep sea oil exploration.https:/www.reu- MINING.COM.(2023,August 30).AIs potential role in the coal industry.https:/ 山东能源.山东能源和华为联合发布矿山领域商用人工智能大模型.2023-07-18http:/www.shandong- M Goodman,Erin Buehler,Patrick Clary,Andy Coenen,Aa
81、ron Donsbach,Tiffanie N Horne,Michal Lahav,Robert MacDonald,Rain Breaw Mi-chaels,Ajit Narayanan,et al.Lampost:Design and evaluation of an ai-assisted email writing prototype for adults with dyslexia.In Proceedings of the 24th In-ternational ACM SIGACCESS Conference on Computers and Accessibility,pag
82、es 118,2022.22Yue Zhang,Leyang Cui,Deng Cai,Xinting Huang,Tao Fang,and Wei Bi.Multi-task instruction tuning of llama for specific scenarios:A preliminary study on writing assistance.arXiv preprint arXiv:2305.13225,2023.13能源ENERGY气候变化14气候变化CLIMATE CHANGE图3.1 人工智能与气候变化议题3.1 引言人工智能技术正在迅速改变气象领域、气候变化研究和全
83、球减排策略。过去,气象学家依赖于传统的统计模型和经验法则来预测天气,但这些方法受到数据量、数据精度和计算能力的限制。通过利用强大的数据处理能力和先进的算法,人工智能不仅提高了天气预报的准确性,还为气候变化研究提供了新的视角。人工智能通过深度学习等技术处理海量的气象数据,并发现隐藏在数据中的复杂模式。人工智能在气象领域的应用,不仅增强极端天气事件的预警能力,减少自然灾害带来的损失,还推动了气候模型的精细化和长期气候变化的研究。此外,通过分析气象数据和环境数据,人工智能可以帮助多行业制定更有效的资源管理和减排策略。人工智能技术不仅可以协助区域级、行业级、企业级碳监测,同时人工智能还可以赋能气候金融
84、加速发展。随着大模型技术的应用,多模态大模型也可以集成分析多类环境表现,这一技术革命正在引领气象科学进入一个全新的时代,为全球应对气候变化提供了强有力的技术支持。为阐明人工智能在解决气候变化问题的影响和应用,本章节内容按照以下结构展开叙述:3.2、3.3、3.4章节分别阐述当前AI技术在区域级、行业级、企业级碳监测的应用现状,接着,在3.5章节中,我们对未来多模态大模型在环境表现评估的可能性进行展望。3.6章节中总结人工智能在气候金融领域的应用,介绍AI技术如何推进企业自主减少碳排放并实现绿色转型。AI助力气候变换议题3.2 人工智能协助区域级碳监测AI3.3人工智能协助行业碳监测3.6 气候
85、金融区域碳计量定义和内容遥感卫星数据的应用3.4.1绿色金融结合企业碳计量3.4.2 基于人工智能的ESG评级多模态大模型概念大模型在气候变化研究的应用3.6.1气候金融的概念3.6.2 人工智能赋能,开阔气候金融新局面3.4 人工智能协助企业级碳计量3.5 多模态大模型集成分析环境表现3.3.1人工智能技术推动工业园区精准碳管理3.3.2人工智能技术推动电力行业精准碳管理3.3.3人工智能技术推动城市建筑碳管理3.3.4人工智能技术推动交通行业碳管理以数据处理为突破点,健全气候风险评估模式以资本流动为动力点,开拓气候投融资新渠道以简化流程为闪光点,加快气候融资审批效率气候建模环境评估辅助气候
86、政策设计3.1 引言15气候变化CLIMATE CHANGE人工智能在实时监测和评估碳排放源方面展现出独特优势。通过结合多源、多模态数据和深度学习算法,人工智能能够从复杂的数据集中溯源关键的碳排放点。这些排放点包括工业设施、电力生产、钢铁厂排放、城市楼宇以及城市交通系统等。通过对这些数据的深度分析,人工智能技术可以精确定位和量化各个排放源的碳排放情况,从而为制定减排策略提供科学依据。人工智能技术技术在优化碳排放测量精度方面也显示出显著的优势。传统的碳计量方法主要依赖于碳捕捉和存储技术(CCS)的设计和操作,这些方法虽然有效,但其成本相对较高。而通过开发和应用先进的AI算法,可以以较低的成本实现
87、更高精度的区域碳排放模拟和预测。人工智能技术算法能够综合考虑多种变量,进行复杂的计算和建模,提供比传统方法更精确的碳排放数据。这种高精度、低成本的碳排放监测和评估方法,不仅提高了环境管理的效率,还为减少温室气体排放提供了强有力的技术支持。通过利用人工智能技术,政府和企业可以更好地监控和管理碳排放,实现环保和可持续发展的目标。人工智能技术驱动的碳排放监测系统还能够实时更新和反馈,为应对突发的环境事件和制定长期的减排策略提供及时和有效的信息支持。碳卫星是一种专门用于监测和测量大气中二氧化碳(CO)及其他温室气体浓度的卫星。这些卫星利用先进的传感器和光谱仪,通过遥感技术从太空中捕捉地球表面和大气层的
88、反射和散射光谱数据,从而精确计算出不同区域的温室气体浓度。碳卫星在应对气候变化、环境监测和科学研究中发挥着重要作用。碳卫星能够提供全球范围内高精度的二氧化碳浓度数据,帮助科学家和政策制定者了解不同地区的碳排放情况。例如,美国国家航空航天局(NASA)的轨道碳观测卫星(OCO-2)1 能够提供详细的二氧化碳浓度分布图,这些数据被广泛用于全球碳循环的研究。碳卫星可以协助气候变化研究,通过长期监测大气中的二氧化碳浓度,碳卫星可以用于究气候变化的趋势和影响。例如,欧洲空间局(ESA)的哨兵-5P卫星携带的TROPOMI光谱仪,能够监测包括二氧化碳在内的多种大气成分。科学家利用这些数据,对全球二氧化碳浓
89、度的长期变化进行了深入研究,从而揭示了气候变化的趋势和影响。通过这些长期数据,研究人员能够更准确地模拟和预测未来的气候变化,并评估气候变化对环境、生态系统和人类社会的潜在影响。同时,通过分析碳卫星数据,研究人员能够识别出主要的碳排放源,如工业区和城市,用于评估不同地区的碳排放量。例如,基于深度学习技术,文章 2 建立模型处理OCO-2等碳卫星数据,对碳排放进行溯源。该模型基于风速、碳卫星数据和电厂用电数据,能够自动识别和溯源不同的排放源,极大提高了数据分析的效率和精度。通过此类算法,AI能够处理和分析大量复杂的遥感数据,提取出有价值的信息。碳卫星高精度数据,使得科学家能够更准确地理解碳排放的动
90、态变化和空间分布,识别大气中二氧化碳浓度的微小变化,并将这些变化与具体的地理区域3.2 人工智能协助区域级 碳监测基于人工智能技术分析遥感卫星数据16气候变化CLIMATE CHANGE和时间段关联起来。通过与人工智能技术的结合,碳卫星还能够实现实时监测和预警功能。AI系统可以实时分析最新的卫星数据,识别出异常的二氧化碳浓度变化,并及时发出预警。例如,在2019年亚马逊森林火灾期间,碳卫星与AI技术的结合使得科学家能够迅速检测到火灾导致的二氧化碳排放增加,从而为政府和救援机构提供了重要的决策支持。这对于应对突发的环境事件,如森林火灾或工业事故,具有重要意义。碳卫星提供的数据不仅用于科学研究,还
91、可以应用于环境监测和政策制定。通过对大气中的二氧化碳和其他污染物数据的分析,政府能够更准确地评估各地的空气质量状况,并制定相应的环保政策。人工智能技术可以帮助政府和环保机构更有效地监控空气质量,评估减排措施的效果,制定和调整环境政策。例如,通过监测工业区和城市的二氧化碳排放,政府可以优化城市规划和产业布局,推动绿色发展。在环境监测和管理中,可以综合使用卫星数据、无人机数据和企业用电量数据。人工智能算法通过整合和分析这些多源数据,能够有效识别工业设施的超标排放和异常排放事件,展现出强大的应用潜力。人工智能算法能够整合碳卫星的区域排放数据、无人机获取的高分辨率环境数据以及企业的用电量数据。这种多源
92、数据的综合分析,能够提供对工业设施排放情况的全面了解。例如,碳卫星提供了大范围、高精度的二氧化碳和其他温室气体的浓度数据,而无人机则可以在低空拍摄,捕捉工业园区和特定排放源的精细图像和视频数据。企业用电量数据则反映了生产活动的强度和模式,结合这些数据,人工智能算法可以更精确地识别排放源和排放量。人工智能技术可以对工业烟囱的排放物质和浓度进行持续监测。通过深度学习和机器学习算法,人工智能技术能够实时分析排放数据,识别出不符合环保标准的排放行为。例如,当烟囱排放的污染物浓度超过设定的阈值时,人工智能技术会立即生成警报,并提供详细的排放报告。这些报告包括排放物质的种类、浓度、持续时间等关键信息,帮助
93、工业园区了解问题的严重性和具体情况。此外,人工智能技术通过整合分析多源数据,提供更丰富实时的环境数据指导和支持,可以帮助工业园区企业迅速采取修正措施。例如,人工智能技术可以实时分析哪些具体的生产环节或设备可能导致超标排放,工业园区根据这些信息及时调整生产工艺或维护设备,避免进一步的环境污染。这种实时、精准的监测和反馈机制,使工业园区能够更主动地进行环境管理,提高了环保合规性。通过人工智能的辅助,环保监管变得更加高效和智能。为了实现双碳发展目标,支撑新型电力系统发展,人工智能技术在实现智能电网中发挥着关键作用,通过数据分析、深度学习、优化算法和实时监3.3 人工智能协助行业碳监测3.3.1 人工
94、智能技术推动 工业园区精准碳管理3.3.2 人工智能技术推动 电力行业精准碳管理17气候变化CLIMATE CHANGE控等多种技术手段,使得电力生产、传输、分配和消费更加智能化和高效化,提升电网的效率、可靠性和可持续性。此外,人工智能技术在电网碳排放因子实时计量中发挥了至关重要的作用。通过综合应用传感器技术、数据分析、机器学习和深度学习算法,人工智能技术能够实现对电网排放因子的高精度实时监测和计量,为优化电力生产和减少碳排放提供了科学支持。人工智能技术可以全面且实时地监测和收集发电设备的运行状态、燃料使用情况、排放数据、电网负载和天气条件等多种信息,通过设计算法提取出有用的信息和特征,分析各
95、类发电机组(如燃煤、天然气、风能、太阳能等)的排放数据,并结合电网负载和天气情况,计算出不同条件、不同时段、不同节点对应的电力排放因子。通过机器学习和深度学习算法,人工智能技术还可以对历史数据进行深度学习,从而预测不同时间段和负载条件下的电网排放因子。这种预测能力使电网运营商能够提前调整电力生产和分配策略,优化发电资源的使用。例如,在预测到高负载时期,人工智能技术可以建议优先使用低排放的可再生能源,减少高碳排放的化石燃料发电量。人工智能技术技术的应用不仅限于排放监测,还包括优化电力生产和资源利用。对于电力生产,人工智能技术能够分析发电过程中的碳排放效率,并优化发电设施和用电设备的运行。通过对历
96、史排放数据和运行参数的深入学习,AI模型可以预测特定负载和天气条件下的最佳运行策略,从而最小化碳排放。通过对各种数据的实时分析,人工智能技术可以动态调整电力生产策略,确保能源利用效率的最大化。例如,AI可以在电力需求高峰期建议增加可再生能人工智能在协助建筑楼宇实现节能方面,发挥着重要作用。首先,基于人工智能技术的数据集成系统可以通过传感器和智能电表收集建筑实时能源使用数据,并对此类数据进行实时分析,识别能源使用模式和趋势。基于分析结果,人工智能技术可以优化楼宇的能源使用,例如调整供暖、通风和空调系统的运行,以减少不必要的能源消耗和碳排放。人工智能技术还可以设计并支撑楼宇对可再生能源的智能使用,
97、比如预测设备维护需求和能耗需求,智能优化用电设备的使用时间,并通过智能控制系统提供实时反馈和建议,帮助用户优化能源使用。通过集成人工智能技术的建筑管理系统,实现了全面的楼宇能源管理,在满足楼宇住户舒适度和功能需求的同时,最大限度地降低碳排放。此外,人工智能能够赋能建筑楼宇降低碳排放,动态响应电网的碳排放水平。间接排放是建筑楼宇的主要碳排放来源,此类排放主要是由建筑楼宇用电、用热产生。要想实现建筑楼宇的碳排放量优化,则需要精细化管理楼宇用电水平和用电时间。基于碳排放成本的负荷响应作为先进的电力管理技术,可以协助楼宇管理碳排放,通过动态调整电力负荷到电网碳排放强度低的时刻,从而最小化企业间接碳排放
98、量。该技术结合实时碳排放数据和电力负荷需求,利用人工源的使用,并在需求低谷期优化传统能源的使用,以平衡电网负载和降低碳排放。3.3.3 人工智能技术推动 城市建筑碳管理18气候变化CLIMATE CHANGE智能和机器学习算法,可以对建筑楼宇此类用电用户的能源使用进行智能管理和优化,在电网负荷高峰期或碳排放较高时,降低楼宇非关键设备的运行或推迟高能耗设备的使用。人工智能算法可以参与规划楼宇内高耗能设备在低碳时段运行,预测电网实时碳排放因子,减少整栋建筑楼宇碳排放,减少相应的环境成本。对于城市交通系统,人工智能可以通过分析交通流量数据、车辆类型和路线信息来监测和评估交通引起的碳排放。人工智能技术
99、在城市交通系统中的应用,显著提高了碳排放监测和管理的效率。在城市交通系统中,交通信号控制的优化是减少交通拥堵和车辆排放的重要手段。AI技术可以实时分析交通流量数据,动态调整交通信号灯的时间和协调性。例如,洛杉矶市的智能交通系统利用人工智能技术分析交通流量和车辆数据,在高峰期动态调整信号灯时间,结果减少了30%的交通拥堵,显著降低了车辆的碳排放。通过分析车辆的使用模式和排放特征,AI技术可以帮助城市交通管理者制定更加精准的减排策略。人工智能可以预测不同时段和不同区域的车辆需求,优化公共交通调度,减少空驶和过度拥挤的现象。遥感卫星数据在交通行业的碳计量中也具有重要作用,通过提供高分辨率的地理和环境
100、数据,使得碳排放的预测和监测更加精准和高效。此类数据通过人工智能技术进行处理和分析,能实现对交通行业碳排放的精准计量。AI技术可以分析卫星影像数据,识别和分类不同类型的交通工具(如汽车、卡车、公共交通工具),并计算它们在特定区域和时间段内的流量,这些信息对于估算碳排放量至关重要。通过对道路和交通基础设施的使用情况进行监测,AI系统可识别高使用率和高排放的道路段。结合车辆类型和流量数据,系统能够精确估算每条道路的碳排放量。此外,遥感数据还可以用于监测交通活动对环境的影响,如空气质量和噪音水平。通过分析这些数据,可以评估交通排放对环境和公共健康的影响,并提供相应的改进建议。人工智能技术通过整合来自
101、遥感技术、地面测量和卫星数据的多源信息,不仅能为区域进行高精度碳计量,更针对企业所需要的范围一、范围二、范围三计量数据进行更多补全。目前市场受限于企业级碳排放数据颗粒度低、数据标准不统一、数据更新滞后的局限,同时缺少受国际认可且数据覆盖全面的企业级碳排放数据库。通过利用人工智能技术,可以自动分析企业多类环境数据(包括企业自主披露环境数据、电力排放因子、企业用电数据、碳卫星、卫星图像等数据),精确地定位企业碳排放的来源,实时监测企业的直接/间接碳排放情况。企业级碳排放数据通过对企业自主披露数据和其他多源测算数据的融合与交叉验证,将重新校验企业范围一、范围二排放值,显著提升企业排放披露数据的准确度
102、和计量科学性。此外,企业电力大数据深度反映了其生产运行方式,通3.4 人工智能协助企业级 碳计量3.3.4 人工智能技术推动 交通行业碳管理19气候变化CLIMATE CHANGE人工智能技术可以高效地处理和分析大量的碳排放数据。通过对企业的生产、运输和能源使用等环节的碳排放数据进行全面分析,人工智能技术可以精确计算出企业的碳足迹。这种精确计量对于绿色金融机构评估企业的环保表现至关重要,确保资金流向环保效益显著的项目。过分析其电力数据厘清其内在特性,可以实现企业的实时碳排放计量。通过可视化工具,可以直观地分析和比较不同企业、行业和地区的碳排放情况,可协助企业进行碳管理和制定碳交易决策从而实现碳
103、中和目标。企业级高精度碳排放数据便于协助企业进行碳管理和制定碳交易决策,从而实现企业碳中和目标。人工智能技术能进行企业碳排放趋势分析和预测,帮助企业制定长期的环保策略。通过分析碳卫星数据,不仅能够实时识别工业设施的超标排放和异常排放行为,还能提供帮助企业迅速采取修正措施。对于监管机构来说,AI提供的精准数据和分析结果,可以大大提升监管的效率和效果,减少漂绿、洗绿现象。这种高效、精准的环境监测和管理方式,为实现可持续发展提供了强有力的技术保障。基于人工智能的企业绿色金融,正在成为推动可持续发展的重要手段。绿色金融致力于为环保项目、可再生能源、能源效率和其他可持续发展领域提供资金支持,而通过人工智
104、能技术对企业碳排放进行精确计量,可以确保资金流向真正环保的项目,并提高投资决策的科学性和透明度。绿色金融的核心理念是通过金融手段推动环境保护和可持续发展。这包括为低碳项目、清洁能源、环保技术和可持续基础设施提供融资,以及鼓励企业和机构减少碳排放。绿色金融旨在通过市场力量促进环境友好型经济的转型,推动全球气候目标的实现。3.4.1 绿色金融结合企业碳计量碳排放数据分析人工智能技术可以帮助金融机构评估环境风险和气候变化对投资项目的影响。通过分析历史数据和环境变化趋势,人工智能技术能够预测未来可能的环境风险,帮助金融机构制定更科学的投资策略。例如,人工智能技术可以基于跨域多源数据,识别出高碳排放企业
105、的潜在环境风险,建议金融机构规避高风险投资。绿色债券(绿债)是一种专门用于资助环保项目的债务工具,旨在推动可持续发展和应对气候变化。企业发行绿色债券可以获得多方面的优势,其中包括但不限于降低资金成本、提升企业形象、吸引长期投资者和提高市场竞争力。目前,全球首只结合“碳卫星”、“碳无人机”等技术认证的绿色债券于港交所成功发行4。深圳市人工智能与机器人 研 究 院 和 深 圳 数 据 经 济 研 究 院 团 队 将“碳 卫星”、“碳无人机”等先进技术结合人工智能算法,实现了企业范围一、二和三的碳排放数据计量。通过资金驱动的绿色金融手段,促成了企业对风险评估和管理20气候变化CLIMATE CHAN
106、GE自身碳排放信息的主动披露。此次合作既是对国内外碳排放披露要求日趋强制化的正面响应,也是企业积极践行国家“双碳”战略要求的重要体现。该SPO报告框架符合国际绿色金融市场规则、数据采集完整合理、技术来源科学有效。环境、社会和治理(ESG)评级是评估企业在环境保护、社会责任和公司治理方面表现的重要指标。随着可持续投资理念的普及,投资者和监管机构越来越重视企业的ESG表现。基于人工智能的ESG评级技术,通过高效处理和分析大量数据,为企业提供更加全面、精准和客观的ESG评级,推动了可持续发展。基于人工智能的ESG评级系统通过多种途径收集和整合企业的ESG相关数据。在环境方面,人工智能技术能够利用传感
107、器、卫星遥感和物联网设备,实时监测企业的碳排放、能源消耗和资源使用情况。此外,人工智能技术还可以监测企业在生产过程中的污染物排放,包括废水、废气和固体废物等数据。社会数据的收集则包括员工福利、劳动条件、健康与安全等信息,这些数据可以通过企业内部系统和第三方调查获取。同时,人工智能技术可以评估企业在社区发展、慈善捐助和社会公益等方面的表现,通过社交媒体和新闻报道获取公众反馈。治理数据的收集涉及企业的董事会构成、管理层薪酬、股东权益保护等治理结构信息,以及企业的法律合规情况、财务透明度和信息披露质量,这些数据可以通过新闻、法律文献和监管报告获取。3.4.2 基于人工智能的ESG评级人工智能技术通过
108、机器学习和自然语言处理(NLP)等算法,对收集到的ESG数据进行深度分析和处理。人工智能系统能够高效处理海量数据,快速提取有价值的信息,避免人工分析带来的主观偏差和效率低下。利用NLP技术,人工智能技术可以对新闻报道、社交媒体评论和公众意见进行情感分析,了解社会舆论对企业ESG表现的评价。此外,通过机器学习算法,人工智能系统能够识别企业ESG表现的历史模式和趋势,预测未来的ESG风险和机会。基于人工智能的ESG评级模型结合多种数据源和分析方法,构建科学、客观的评级体系。该模型将环境、社会和治理三个维度的表现进行量化评分,综合评估企业的ESG表现。根据不同行业和地区的特点,人工智能技术可以动态调
109、整各个维度的权重,确保评级结果的公正性和准确性。同时,人工智能技术能够实时更新ESG数据和评级结果,反映企业最新ESG表现,提供及时、准确的评级信息。基于多模态数据的大模型分析仍是一个前沿的应用领域,它利用人工智能技术处理和分析多种类型的数据,从而提供更全面和深入的环境表现洞察,目前主要应用在计算机视觉领域。而多模态数据分析涉及将来自不同来源的数据集成到一个分析框架中。这种集成允许模型从多个维度理解和预测环境现象,如气候模式、极端天气事件和生态系统变化。借助强大的计算能力,大模型(如深度学习网络和集成学习系统)能够处理和分析大规模的数3.5 多模态大模型集成分析 环境表现21气候变化CLIMA
110、TE CHANGE过精确的碳排放量计算,确保碳信用的公正和有效交易。在城市规划中,模型可以预测不同规划方案对碳排放的影响,支持低碳城市建设。多模态数据大模型大大增强了气象变化研究和碳排放计量的能力,为应对全球气候变化挑战提供了强有力的技术支持。据集,识别其中的复杂模式和关联。这些模型可以自动调整和优化,以提高预测的准确性和可靠性。多模态数据大模型在气象变化研究,特别是在碳排放计量方面,可以发挥重要的作用。首先,多模态数据大模型能够整合和处理来自多个来源的多种类型的数据,包括卫星图像、地面气象观测数据、海洋和大气传感器数据以及社会经济数据。卫星图像提供全球范围内的碳排放信息,包括森林砍伐、城市扩
111、张等。地面气象观测数据提供精确的温度、湿度、降水量等信息,有助于理解局部气候变化的影响。海洋和大气传感器数据监测海洋中的二氧化碳吸收量以及大气中温室气体的浓度。社会经济数据包括能源消耗、工业活动、交通运输等,可以直接反映人类活动对碳排放的贡献。多模态数据大模型利用深度学习和集成学习技术,可以在大规模数据集上进行训练。这些模型能够自动学习和识别数据中的复杂模式和关联,提高对碳排放的预测精度。例如,深度学习网络通过多个层级的神经网络,可以捕捉到碳排放与环境因素之间的非线性关系。集成学习系统则结合多个模型的预测结果,能够减少单一模型的误差,提高预测的稳定性和可靠性。此外,多模态数据大模型为环境政策的
112、制定和评估提供了科学依据。通过模拟不同减碳措施的效果,模型能够帮助政策制定者选择最有效的减排策略。利用实时数据监测政策实施后的实际效果,确保减排目标的实现。例如,在碳交易市场中,多模态数据大模型可以帮助建立和优化碳交易市场,通3.6.1 气候金融的概念3.6 气候金融气候金融,也被称为气候投融资,是国际社会为应对全球气候变化而实施的一系列资金融通工具和市场体系、交易行为及相关制度安排的总称。当前的金融市场对气候金融尚未存在统一的定义,但可大致将其分为狭义气候金融和广义气候金融。狭义的气候金融概念主要聚焦于具有制度创新性质的碳交易制度,将碳排放权(排放配额)及其衍生产品视为商品,并允许其进行交易
113、。广义的气候金融除了涵盖传统金融活动的改造升级,还涉及为应对气候变化而采取的各类直接和间接金融交易活动,并涵盖了为低碳转型活动提供资金支持的金融活动,亦或是开发可再生能源等各类有利于气候保护的业务开展,例如高碳技术产业升级或是太阳能板安装等,旨在满足低碳发展的各项投融资需求。2020年10月,生态环境部、人民银行等五部委联合发布了关于促进应对气候变化投融资指导意见,正式对气候投融资进行了明确的定义:22气候变化CLIMATE CHANGE注:该图说明了ESG评级差异。横轴表示作为每家公司基准的Sustainalyt-ics评级值(n=924)。其他五位评分者的评分值以不同颜色绘制在纵轴上。对于
114、每个评估者,值的分布已归一化为零均值和单位方差资料来源:Aggregate Confusion:The Divergence of ESG Ratings图1 ESG评级差异而人工智能的出现,为应对此类困难带来了突破性的变革。一是人工智能能够提升对气候数据的处理能力。在评估企业气候风险时,不但需要同时处理大量的数据,还要确保数据的质量,并对数据做一定的保密处理。二是运用集成人工智能的终端可以实现全流程自动化。集成了人工智能的信息终端能够实时采集企业的碳排放数据,建立完整的数据库,为金融机构、企业和监管部门提供数据信息服务。在此基础之上,人工智能能够通过整合现有数据,并结合不同地区的环境情况,自
115、动建立符合当前地区的多维风险模型,提升气候风险评估与预测的精准度5。“气候投融资是指为实现国家自主贡献目标和低碳发展目标,引导和促进更多资金投向应对气候变化领域的投资和融资活动,是绿色金融的重要组成部分”。该指导意见将气候金融的活动范围分为减缓气候变化和适应气候变化两个部分。尽管国际上对气候金融的定义还没有形成统一的意见,但是发展气候金融的主要目的是一致的,即通过满足碳密集型行业绿色转型的资金需求来应对气候变化。气候金融是可持续金融的重要组成部分,通过引导市场资金流动从而降低气候变化带来的风险,减少温室气体排放,助力国家达成碳达峰、碳中和的战略目标。当前,业界在气候风险评估领域普遍面临一项挑战
116、,即对于企业投资项目所产生的碳排放量难以进行精确预测,对企业的ESG评级标准也存在较大差异(见图1)。由于缺乏标准化的气候风险数据和评估方法,这不仅导致监管机构不能有效追踪企业的ESG动态,同时也使得银行在发放绿色金融贷款时无法准确评估企业的相关能力,进而制约了企业低碳转型的进程。3.6.2 人工智能赋能,开阔气候金融新局面(一)以数据处理为突破点,健全气候风险评估模式23气候变化CLIMATE CHANGE气候适应性融资在大多数国家仍然存在巨大的缺 口。联 合 国 秘 书 长 安 东 尼 奥 古 特 雷 斯(Antnio Guterres)在首届气候脆弱金融峰会上提到:“每年只有167亿美元
117、的气候融资被用于环境适应和复原,但是发展中国家的适应成本为每年700亿美元,并且可能会在2030年提升至3000亿美元6。”靠国际公共资金无法填补这一缺口,政府也无法在不增加财政空间的情况下大规模吸收贷款融资。人工智能可以利用卫星图像、手机数据、传感器信息、无人机拍摄画面以及地理标记的社交媒体内容等多样化的替代数据来设计个性化的金融产品,进而吸引投资者通过购买相关金融产品的方式参与气候投融资活动。以银行为例,其可依托农作物生长情况的遥感监测数据以及农民的交易历史记录,对农民的信用风险水平进行全面而准确地评估,进而为符合条件的种植作物或耕作技术改进项项目提供专门的贷款支持。相较于传统的信用评分机
118、制,人工智能算法在解析替代数据方面能够展现出更高的精确性和效率,从而有效推动气候金融领域的创新与发展。此外,在农业保险领域,农民购买保险产品后,保险公司可利用人工智能技术对气象站实时监测的天气触发因素进行精准识别,实现自动化索赔处理,提升保险服务的便捷性和准确性。气候融资流程一般基于标准工作流程,此类工作流程往往是简单但重复的,例如收集文件、验证资格、管理合规性等。以人工的形式对这些资料进行审核,不仅会极大地降低融资审批效率,也容易出现审核失误等非系统性风险。利用人工智能处理这类较为繁琐的流程,能够提高审批效率,还能最大限度地减少人工失误。例如通过人工智能自动处理非结构化数据,并从中提取关键信
119、息进行填单,在减轻员工工作量的同时降低了贷款方的操作难度。另一方面,这种全自动的信息处理提高了气候融资流程的标准化程度,增强了信息透明度,还能降低银行的管理费用,使银行在风险控制和业务扩张之间找到更加平衡的发展路径。人工智能技术正迅速改变气象领域、气候变化研究和全球减排策略。传统气象学因数据和计算能力有限,而人工智能利用其强大的数据处理和先进算法,提高了天气预报的准确性,并为气候变化研究提供了新视角。通过深度学习处理海量气象数据,人工智能发现了隐藏的复杂模式,增强了极端天气事件的预警能力,减少了自然灾害损失,推动(二)以资本流动为动力点,开拓气候投融资新渠道(三)以简化流程为闪光点,加快气候融
120、资审批效率24气候变化CLIMATE CHANGE3.7 总结与展望1 Crisp,David.Measuring atmospheric carbon diox-ide from space with the Orbiting Carbon Observato-ry-2(OCO-2).Earth observing systems xx.Vol.9607.SPIE,2015.2 章政文,顾津锦,赵俊华,等.基于碳卫星与电力排放数据的碳计量J.电力系统自动化,2024,48(1):2-9.DOI:10.7500/AEPS20230314004.ZHANG Zhengwen,GU Jinjin,
121、ZHAO Junhua,et al.Carbon Measurement Based on Carbon Satellite and Electricity Emission DataJ.Automation of Electric Power Systems,2024,48(1):2-9.DOI:10.7500/AEPS20230314004.3 Liu,Guolong,et al.Real-time corporate carbon footprint estimation methodology based on appli-ance identification.IEEE Transa
122、ctions on Industrial Informatics 19.2(2022):1401-1412.4 https:/ 薛志华&杭歆婷.(2023).金融科技赋能绿色金融的问题及对 策 研 究.国 际 金 融(1 2),9-1 7.d o i:1 0.1 6 4 7 4/j.c n-ki.1673-8489.2023.12.001.6 Developing countries could face annual adapta-tion costs of$300 billion by 2030,secretary-general warns in message to climate v
123、ulnerable finance summit|meetings coverage and press releases United Nations.Available at:https:/press.un-.org/en/2021/sgsm20816.doc.htm(Accessed:23 May 2024).3.8 参考文献25气候变化CLIMATE CHANGE了气候模型的精细化和长期研究。人工智能在监测和评估碳排放方面表现出独特优势,通过多源数据和深度学习算法,能够追溯关键碳排放点,优化碳排放测量精度,提供高精度、低成本的碳排放模拟和预测。碳卫星技术的应用,使全球二氧化碳浓度监测更
124、为精确,有助于研究气候变化趋势和评估其影响:在行业层面,人工智能推动了工业园区、发电设备和城市建筑的精准碳管理,通过综合分析多源数据,识别超标排放和异常排放行为,优化能源使用,减少碳排放。此外,人工智能在交通系统中的应用,通过分析交通流量数据、车辆类型和路线信息,优化交通信号控制,减少拥堵和排放;在企业层面,人工智能整合多源信息,精确定位碳排放来源,实时监测直接和间接碳排放,提高企业碳管理和交易决策的准确性。绿色金融结合人工智能,推动可持续发展,通过高效处理和分析碳排放数据,评估环境风险,确保资金流向环保项目,提高投资决策的科学性和透明度;多模态大模型集成分析技术整合多种数据,提供更全面的环境
125、表现洞察,增强气候变化研究和碳排放计量能力,为制定和评估环境政策提供科学依据。人工智能不仅推动了气候变化研究和碳管理的精细化,还赋能气候金融,通过高效数据处理、风险评估、个性化金融产品设计等方式,推动全球应对气候变化,助力实现碳中和目标。工业26工业INDUSTRIAL图4.1 AI助力工业结构图4.1 引言随着人工智能技术的迅猛发展,具身智能和大语言模型在工业领域的应用前景备受瞩目。具身智能赋予机器人和其他物理实体以感知、理解、交互和自主行为的能力,使其能够在真实世界中智能地执行任务。这不仅提升了工业系统的智能化水平和效率,也带来了新的能耗挑战。大语言模型,如OpenAI的GPT-3和谷歌的
126、PaLM等,虽然在自然语言处理方面展现出色,但其训练和推理过程消耗的能源巨大。据统计,GPT-3的一次训练总能耗约为1287MWh,相当于120个美国家庭一年的用电量。而谷歌的PaLM消耗了3436MWh,超过了GPT-3的两倍多;GPT-4的一次训练总能耗超过50GWh,约为GPT-3的50倍,约占加利福尼亚州一年发电量的0.02%。面对如此巨大的能耗压力,如何在提升模型性能的同时,兼顾训练效率和能源可持续性,成为了业界关注的焦点。本章将详细探讨大语言模型在工业具身智能中的能耗特点及其优化策略,探究未来十年内工业领域AI技术的发展趋势及其对能源系统的影响。工业4.2 AGI技术及大语言模型的
127、能耗分析AI4.3 工业领域具身智能的能耗分析4.6 本章小结4.2.1主流大语言模型介绍4.2.2大语言模型的推理部署能耗4.2.3大语言模型的AI芯片和专用硬件4.2.4 数据中心建设成本分析4.41工业领域用电现状及AI替代人工的可能性分析4.4.2电力系统发展规划及对大规模AI进入的保障能力分析4.5.1技术发达国家的一般性影响4.5.2 劳动力富裕国家陷阱内容总结讨论与展望4.4 能源系统对工业领域AI替代人工的支撑能力分析4.5 AGI对劳动力市场的影响4.3.1具身智能的能耗特点4.3.2工业具身智能的应用现状4.3.3工业具身智能未来十年发展的时间表4.3.4工业具身智能未来十
128、年的发展和能耗趋势以中国和美国为例4.3.5工业具身智能未来十年的市场规模和能耗水平4.1 引言27工业INDUSTRIALV100 GPU,训练时间将长达288年。实际训练时,OpenAI使用了1000多个GPU进行并行计算,才将训练时间缩短到了几个月。其他大模型的情况也大抵如此。随着模型规模的不断增长,训练成本也呈指数级上升。这不仅对计算资源提出了更高的要求,也引发了人们对于能源消耗和环境影响的担忧。如何在提升模型性能的同时,兼顾训练效率和能源可持续性,已经成为了业界亟待解决的难题。训练大型语言模型需要消耗大量能源,其电力需求远高于传统数据中心。OpenAI的报告显示,自2012年以来,A
129、I训练应用的电力需求呈指数级增长,每3到4个月翻一番。华为AI首席科学家田奇指出,过去10年AI算力增长了至少40万倍。由此可见,AI大模型的能耗问题十分突出。随着人工智能技术的飞速发展,大语言模型已经成为了自然语言处理领域的重要突破性成果。当前主流的大语言模型,如OpenAI的GPT-3、谷歌的PaLM、DeepMind的Gopher以及Meta的LLaMA2等,都拥有海量的参数和强大的性能。以GPT-3为例,其参数量高达1750亿个,PaLM则达到了5400亿个,Gopher和LLaMA2分别为2800亿和700亿个。然而,训练这些大模型需要耗费大量的计算资源和电力。据OpenAI披露,G
130、PT-3的一次训练总能耗约为1287MWh,相当于120个美国家庭一年的用电量;GPT-4的一次训练总能耗超过50GWh,约为GPT-3的50倍,约占加利福尼亚州一年发电量的0.02%。谷歌的PaLM则消耗了3436MWh,超过了GPT-3的两倍多。即使是相对较小的Gopher和LLaMA2,其训练能耗也分别高达1066MWh和688MWh。这些数字远远超过了传统数据中心的能耗水平。训练一个大语言模型通常需要数周甚至数月的时间,并且需要大规模的并行计算。以GPT-3为例,如果只使用单个NVIDIA 4.2 AGI技术及大语言模型的 能耗分析4.2.1 主流大语言模型介绍4.2.2 大语言模型的
131、推理部署能耗面对大语言模型训练成本和能耗的急剧增长,业界正在积极探索更加高效和可持续的部署方式。目前,主要有几种部署大语言模型的方式,每种方式在能源效率方面各有特点。云端API调用是最常见的方式之一,用户可以通过API接口调用云服务提供商的模型服务。这种方式的优势在于云服务商通常拥有优化的基础设施和高效的模型实例,可以在不同用户之间共享资源,提高利用率。但是,API调用可能涉及网络传输的额外能耗。本地部署则是在自己的服务器或工作站上部署模型,可以使用开源的模型实现。这种方式允许用户对硬件和软件进行定制优化,减少了网络开销。但是,单个用户可能无法充分利用计算资源,能效取决于具体的硬件配置和优化程