定制报告-个性化定制-按需专项定制研究报告
行业报告、薪酬报告
联系:400-6363-638
《36氪研究院:2024年具身智能产业发展研究报告(55页).pdf》由会员分享,可在线阅读,更多相关《36氪研究院:2024年具身智能产业发展研究报告(55页).pdf(55页珍藏版)》请在薪酬报告网上搜索。
1、36KR RESEARCH2024年具身智能产业发展研究报告大模型赋能,人形机器人引领具身智能新浪潮36氪研究院2024.08236Kr-2024年具身智能产业发展研究报告历经概念萌芽、理论发展、技术突破等发展阶段,具身智能正在逐步走向产业应用。具身智能的产业发展历经多个阶段,自1950年代图灵提出人工智能可能的发展方向为其概念奠定基础后,1980至1990年代经历早期探索与理论发展,罗德尼布鲁克斯和罗尔夫普费弗等人的研究提供了重要理论支撑。2000年代初,具身智能研究开始融合跨学科方法和技术,进入跨学科融合与技术突破阶段。近年来,具身智能受到广泛关注,正逐步走向产业应用。具身智能因技术成熟度
2、差异在商业化落地上存在异步性。在机器人领域,通用型机器人如轮式、四足机器人已凭低成本和广泛适用性在工厂、物流、医疗等领域实现初步商业化。而人形机器人等高端智能体面临更大商业化挑战,高昂的研发成本、复杂的制造工艺及不成熟的市场应用限制了其大规模商业化。专家预测,未来三到五年内人形机器人技术有望实现质的飞跃。人形机器人作为具身智能的典型产品,已在商业化试水阶段,未来五年有望规模化应用。人形机器人在产业应用上取得显著进展,在制造、新能源、医疗等多领域的应用需求不断上升。多家企业已发布人形机器人产品或迭代版本,并取得技术突破。但目前仍面临规模化挑战,这主要归因于技术难度大、制造成本高昂及商业化难度高。
3、业界预测,随技术瓶颈克服、产业链完善及成本降低,人形机器人市场有望快速增长,2035年中国市场规模有望达到3,000亿元*。报告摘要案例分析公司寒武纪专注于人工智能芯片产品的研发与技术创新汇川技术专注于工业自动化控制与驱动技术广和通无线通信模组和AIoT解决方案供应商本末科技专注于直驱电机和机器人整机技术擎朗智能聚焦具身智能服务机器人的商业化应用云迹科技专注于AI、具身智能的研发、应用及平台建设1*数据来源:中国人形机器人产业大会人形机器人产业研究报告,36氪研究院整理*注:案例顺序为按章节及企业首字母排序目录 CONTENTS具身智能产业发展概况定义与研究范畴产业发展历程产业发展现状资本分析
4、01具身智能产业链分析具身智能产业图谱具身智能产业链构成分析02具身智能发展趋势展望跨模态交互自适应学习与人类协作05具身智能主要产品分析人形机器人非人形具身智能产品典型公司分析04具身智能核心零部件与软件集成分析芯片传感器电机(含伺服电机)03AI算法云服务典型公司分析 定义与研究范畴 产业发展历程 产业发展现状 资本分析具身智能产业发展概况01351.1 定义与研究范畴具身智能是一种基于物理身体进行感知和行动的智能系统,强调机器与环境的交互能力根据中国计算机学会(CCF)专家的定义,具身智能(Embodied ArtificialIntelligence,EAI)是指一种基于物理身体进行感
5、知和行动的智能系统,其通过智能体与环境的交互获取信息、理解问题、做出决策并实现行动,从而产生智能行为和适应性。人形机器人作为具身智能的典型代表,被视为实现具身智能的最佳载体之一。人形机器人不仅具备感知和决策能力,还能通过机械臂、轮子等执行器与物理世界互动,完成复杂任务。这种结合感知、决策和行动的能力,正是具身智能的核心特征。此外,由于人类设计的世界主要基于人类的生理结构,人形机器人的外形与人类相仿,具备更多的关节和灵活度,使得其与物理世界互动的隐性成本最小化,能够更自然地融入人类环境并执行各种任务。尽管人形机器人在实现具身智能方面具有显著优势,但并非所有具身智能系统都必须采用人形机器人的形态。
6、具身智能的实现方式多种多样,可以根据具体任务和环境需求选择合适的智能实体形态。例如,在家庭中行驶并与人进行交互的宠物机器人、L4 自动驾驶车等,本质上都具备“具身”和“智能”两种属性。在众多具身智能的实现方式中,基于人形机器人在技术实现、应用前景以及与人类社会的融合潜力等方面的独特优势,本报告将人形机器人作为研究重点。4图示:具身智能的主要产品类型参考资料:36氪研究院根据公开资料整理具身智能机器人自动驾驶载具工业机器人服务机器人人形机器人商用车乘用车具身智能Robotaxi、Robobus、干线物流、末端物流、港口、矿山、环卫等应用场景配送、导览、陪伴、安防等无人机eVTOL61.1 定义与
7、研究范畴具身智能主要依赖于本体、智能体、数据和学习进化框架四大核心要素具身智能作为人工智能领域的一个重要分支,其核心在于智能体通过物理身体与环境的交互来实现感知、理解、决策和行动。一般认为,具身智能包括四大核心要素:本体、智能体、数据和学习进化框架。本体是具身智能的物理基础,承担执行感知和任务的实际功能。本体的设计需广泛考虑环境适应性,包括感知、运动和操作执行能力,同时兼顾成本、可靠性和耐用性。智能体,作为具身于本体之上的智能核心,负责感知、理解、决策和控制等核心工作。通过与环境的交互,智能体获取信息,理解问题,并做出决策,最终控制本体完成任务。其技术实现通常基于深度学习、强化学习等先进算法,
8、能够处理复杂的传感数据,提取信息,并生成控制指令。数据是智能体进行感知、理解和决策的基础,泛化的关键在于数据的质量和数量。学习进化框架则是具身智能实现持续进步和适应性的关键。它允许智能体通过与环境的交互来不断学习新知识、优化决策策略并提高任务执行效率。学习进化框架的技术实现通常包括强化学习、进化算法等多种技术,这些技术使得智能体能够在不断变化的环境中不断适应和进化。5图示:具身智能的四大核心要素参考资料:36氪研究院根据公开资料整理03040201智能体智能体需要能够理解和解释来自环境的复杂信息,以便做出适当响应,涉及机器学习、深度学习、强化学习等技术数据数据可能来自本体的传感器,如摄像头、麦
9、克风、触觉传感器等,也可能来自外部环境的其他数据源本体本体设计需要考虑到智能体的运作环境,人形机器人的本体包括四肢、头部、躯干等,自动驾驶汽车本体则是车辆本身及其传感器和执行机构学习进化框架学习进化框架的设计需要考虑智能体的长期发展目标,以确保其在不断变化的环境中的适应性和竞争力。涉及监督学习、无监督学习、强化学习等算法71.2 产业发展历程具身智能产业历经概念萌芽、理论发展、技术突破等发展阶段,现正逐步走向产业应用具身智能的产业发展历程可以追溯到1950年代的概念萌芽阶段,当时,图灵在其论文中提出了人工智能可能的发展方向,为具身智能的概念奠定了基础。随后,经历了1980年代至1990年代的早
10、期探索与理论发展,罗德尼布鲁克斯和罗尔夫普费弗等人的研究为具身智能提供了重要理论支撑。进入2000年代初,具身智能研究开始融合跨学科的方法和技术,如机构学、机器学习、机器人学等,形成了相对完整的学科分支,标志着其进入了跨学科融合与技术突破阶段。2010年代中期,深度学习技术的快速发展为其注入了新的发展动力。2020年以来,具身智能受到科技界和产业界的广泛关注,众多科技巨头及高等学府纷纷投入相关研究。如今,具身智能作为人工智能的重要分支,正逐步走向产业应用,推动专用机器人向通用机器人发展。61950-1980概念萌芽1950年,艾伦图灵提出人工智能可能的发展方向,为具身智能奠定基础,这被视为具身
11、智能概念的萌芽1981-2000理论发展与早期探索罗德尼布鲁克斯和罗尔夫普费弗等学者提出行为主义智能和身体化智能理论2001-2010跨学科融合与技术突破具身智能研究开始融合跨学科的方法和技术,如机构学、机器学习、机器人学等,形成了相对完整的学科分支2011-2020深度学习推动与快速发展深度学习等技术的快速发展推动了具身智能研究进入新阶段,研究人员开始利用虚拟物理环境和计算能力设计和训练智能系统2021-至今产业应用拓展与持续发展具身智能受到科技界和产业界的广泛关注,微软、谷歌、英伟达等科技巨头以及高等学府开展相关研究。2023年,具身智能作为人工智能发展的一个重要分支,成为科技界的新风向标
12、,人形机器人等具身智能产品开始亮相。未来将推动通用机器人发展和人工智能技术的创新图示:具身智能的产业发展历程参考资料:36氪研究院根据公开资料整理81.3 产业发展现状具身智能产品因技术成熟度差异而存在商业化落地的异步性技术创新是驱动具身智能飞速发展的核心引擎。在深度学习、计算机视觉、自然语言处理及机器人等技术的共同推动下,具身智能在感知、决策和执行等关键环节取得了突破性进展。特别是大模型的崛起,为具身智能赋予了更强大的数据处理与学习能力,使其能够更精准地解析复杂环境并高效响应多样化的任务需求。在硬件方面,尽管我国伺服电机、工业机器人等已具备国际竞争力,但在高性能计算单元、精密传感器及耐用机械
13、结构的研发与集成上,仍存在提升空间。同时,软件算法的持续优化以及软硬件间的协同优化,也是推动具身智能迈向新高度的关键所在。商业化方面,具身智能因技术成熟度差异而存在落地异步性的特点。在机器人领域,一方面,通用型机器人如轮式机器人、四足机器人等,凭借其相对较低的成本和广泛的适用性,已经在工厂、物流、医疗等领域实现了初步商业化应用。这些机器人能够在结构化或半结构化环境中高效完成任务,为企业带来实实在在的效益。另一方面,人形机器人等高端智能体则面临着更大的商业化挑战。尽管其在交互能力、通用性等方面具有显著优势,但高昂的研发成本、复杂的制造工艺以及尚不成熟的市场应用都让其在大规模商业化应用的进程上存在
14、着不确定性。因此,目前人形机器人的主要用途仍局限于展示和科研领域,距离真正的商业化应用还有相当长的距离。业界认为,技术瓶颈是当前人形机器人无法大规模应用的主要原因之一。尽管人工智能技术在近年来取得了显著的进步,但在推动人形机器人全面商业化方面仍未达到临界点。专家预测,未来一到两年内可能会有小范围的技术突破,而三到五年内则有望实现质的飞跃,这将为人形机器人的商业化应用提供有力的技术支撑。在自动驾驶领域,政府大力支持L3及以上自动驾驶系统的商业化应用,特别是在Robotaxi和无人配送等场景中的应用,多个试点项目在智能驾驶示范区内运行。791.3 产业发展现状具身智能技术不断创新,国内外知名企业积
15、极布局具身智能产业在各大企业的推动下正快速发展,技术不断创新,应用场景日益广泛。从软硬件解耦技术到人形机器人的研发与应用,再到与大模型的深度融合,具身智能正逐步成为人工智能领域的重要分支。在2024年世界人工智能大会上,展示了18台高水平的国产人形机器人,代表了当前中国在该技术领域的最高成就。其中,“青龙”作为全尺寸通用人形机器人,首次亮相便受到广泛关注。此外,特斯拉、谷歌、英伟达、OpenAI、小米、优必选、华为、科大讯飞等国内外多家知名企业均在具身智能领域积极布局,并已取得显著进展。8企业名称技术研发市场应用基于大模型研发Open AI大模型研发,如ChatGPT、GPT-4等。这些大模型
16、具备强大的自然语言处理能力和多模态感知能力,为具身智能的发展提供了重要支撑。OpenAI的大模型技术已经广泛应用于多个领域,包括智能客服、内容创作、游戏AI等。通过投资合作等方式,与多家机器人企业合作。谷歌基于大模型进行RT1、RT2等相关探索,风格百花齐放,注重基础技术创新。谷歌的AI技术已经广泛应用于多个行业,包括医疗、金融、教育等。华为华为推出盘古具身智能大模型,并与乐聚机器人公司合作,共同探索“华为盘古大模型+夸父人形机器人”应用场景,打造通用具身智能解决方案,建设“人形机器人+”开放生态平台人形机器人“夸父”可以识别物品、问答互动、击掌、递水等。除了人形机器人,盘古具身智能大模型还可
17、以赋能多种形态的工业机器人和服务机器人,让它们帮助人类去从事危险和繁重的工作。科大讯飞推出科大讯飞机器人超脑平台,以视听融合的多模感知交互和基于大模型的机器人大脑,通过软硬件一体的方式构建机器人新交互。科大讯飞的多模态交互系统已被广泛应用于数字人一体机、商用及家用服务机器人等多种设备中,其在智能家居、智慧零售、教育等领域的赋能作用尤为突出。基于硬件研发英伟达依托算力优势构建模型训练和仿真平台,为具身智能创新提供基础设施支持。同时,作为算力底座和通用大脑的提供者,助力其他企业实现具身智能技术的突破和应用。英伟达的GPU芯片和AI计算平台已经广泛应用于多个行业,包括自动驾驶、智能制造、医疗影像分析
18、等。小米在智能驾驶领域投入显著,专注于全栈技术自研,从硬件到软件,从感知系统到决策算法,均坚持自主研发。同时,研发四足机器人和人形仿生机器人CyberOne,并对外投资具身智能公司。支持多种应用场景,如家庭助理、陪伴机器人、教育辅助等。基于自动驾驶研发特斯拉在自动驾驶和智能汽车领域迭代出相对完整的智能系统,并向人形机器人拓展。推出人形机器人“擎天柱”(Optimus)。人形机器人“擎天柱”仍处于研发和测试阶段,尚未大规模商业化应用。但已经展示了在多种场景下的潜力,包括家庭服务、工业生产等。基于人形机器人研发优必选聚焦于人形机器人核心技术的研发,拥有全栈式研发技术,包括机器人运动规划和控制、伺服
19、驱动器、计算机视觉、语音交互、SLAM导航、视觉伺服操作、人机交互、机器人操作系统应用框架ROSA等。优必选的人形机器人已经进入产业化落地阶段,广泛应用于养老、商用服务、教育、家庭陪伴、物流、工业等领域。图示:部分大公司在具身智能领域的主要布局数据来源:36氪研究院根据公开资料整理101.3 产业发展现状具身智能市场规模不断扩大,2026年有望突破万亿规模随着中国科技的飞速发展、数字化转型的加速,以及人工智能技术的不断突破和创新,具身智能的市场规模呈现出显著的增长态势。据36氪研究院测算,具身智能的市场规模已从2018年的2,923亿元增长至2023年的7,487亿元,年复合增长率达到20.7
20、%。这一显著增长不仅反映了技术进步和市场需求的双重驱动,还预示着未来具身智能行业的巨大潜力。从技术层面看,人工智能算法的不断成熟和大模型技术的突破为具身智能的发展提供了强大的技术支撑,使得具身智能可以在更多领域实现深度应用,从而提高生产效率、优化用户体验,进一步推动市场规模的扩大。从市场需求层面看,随着社会对智能化解决方案的需求日益增长,具身智能作为一种创新的技术形态,正逐渐渗透到工业、医疗、物流、交通等多个领域。这种广泛的应用场景将为具身智能带来持续的增长动力。预计未来五年,具身智能的市场规模将持续增长,有望在2026年突破万亿规模。9图示:中国具身智能行业市场规模预测(单位:亿元)数据来源
21、:36氪研究院根据公开资料整理与测算8931,2261,7022,3582,8943,3013,8324,5025,2906,2002,0302,0722,3453,0803,6474,8025,2295,8456,3282018201920202021202220232024e2025e2026e2027e2,9233,2984,0475,4386,5417,4878,6349,73111,13512,528机器人自动驾驶CAGR=20.7%CAGR=17.6%111.4 资本分析具身智能成为热门赛道,特别是机器人领域,进入发展快车道,资本热度不断上升在AI大模型的带动之下,具身智能正在成为
22、今年最火的赛道之一,特别是机器人领域,进入了发展快车道。据IT桔子数据,2019年2023年,中国机器人行业投融资案例从2019年的37起增长至2023年的103起,投资金额从19.83亿元增长至97.39亿元,年复合增长率为38.8%。2024年1-7月,行业共发生78起投融资案例,投融资金额53.62亿元,预计延续增长态势。从融资轮次来看,机器人行业投资的主流趋势依然倾向于早期阶段,因为相较于成长期,早期投资的项目可选择度更高。但已有一部分企业开始崭露头角,展现出成长态势。值得注意的是,战略投资逐年增多,已由2018年的4%增长至2023年的14%。目前,众多互联网企业及传统企业正跨界涉足
23、机器人领域,它们通过战略投资的方式获取新技术、开拓新市场或强化供应链管理,以期提升自身的竞争力。从单笔融资金额来看,百万级别的事件占比不断被压缩,由2018年的23%降至2023年的12%。同时,单笔交易金额在亿级别的事件在当年的占比不断增加,这表明行业发展逐渐成熟,投资偏好趋向于集中投资优质项目。10图示:2023年机器人行业投融资事件轮次分布和金额区间分布数据来源:IT桔子,36氪研究院整理*注:早期融资包含种子轮、天使轮及 A 轮(含 Pre-A、A、A+);成长期为 pre-B 轮、B 轮、B+轮、C 轮、C+轮;中后期为 D 轮至上市前的阶段59.0%24.0%14.0%4.0%13
24、.0%54.0%32.0%1.0%早期投资成长期投资中后期投资战略投资百万及以下千万级别一至十亿十亿级以上 具身智能产业图谱 具身智能产业链构成分析具身智能产业链分析021113具身智能产业图谱上游基础设施与原材料传感器控制器芯片2.1 具身智能产业图谱12注:具身智能产业图谱由36氪研究院梳理,只列出部分企业为代表,未覆盖全产业中游软件开发与系统集成下游主要产品与应用场景主要产品工业制造服务业医疗康复通信模组能源管理电机(含伺服电机)AI算法操作系统中间件云服务应用场景交通出行公共安全教育娱乐人形机器人非人形具身智能产品14具身智能产业是一个融合了先进技术、复杂系统集成和多元化应用场景的综合
25、性产业。其产业链结构可清晰划分为上游、中游和下游三个部分。上游环节是具身智能产业的基础,主要包括芯片、传感器、控制器、电机(含伺服电机)、通信模组、能源管理等。这些核心组件是构建具身智能所必需的“硬件”基础。其中,芯片作为具身智能的“心脏”,主要提供强大的计算能力,支持复杂的算法运行。传感器则负责收集外部环境的多维数据,如视觉、听觉、触觉等,是实现具身智能感知功能的基础。控制器对传感器收集的数据进行高效处理,并发出精确的控制指令,指导执行机构完成相应的任务动作。电机是将电能转化为机械能的关键部件,驱动各种执行机构的运动,其中伺服电机作为核心部件,根据控制器指令实现对运动的精确控制,完成精准定位
26、和操作。通信模组负责设备之间的数据传输和通信,确保系统各部分之间的协同工作,实现信息的无缝流转。能源管理为整个系统提供稳定的能源供应,包括高性能电池、先进的电源管理系统等。上游环节是整个产业链的基础,为中游和下游提供了必要的硬件支撑。这些基础设施的质量、性能和可靠性直接影响到中游产品的整体性能和下游应用的实际效果。中游环节是产业链的技术核心,涉及AI算法、操作系统、云服务以及中间件的开发与集成。这一环节的工作是将上游的硬件组件“激活”,通过编程和系统集成,使其能够执行复杂的智能任务。AI算法是具身智能的“大脑”,负责处理和分析数据,做出决策;操作系统为智能设备提供统一的软件平台,支持各种应用程
27、序的运行和管理;云计算提供数据存储、处理和分析能力,支持大规模的数据处理和智能应用;中间件则起到连接不同系统和组件的桥梁作用。中游环节是整个产业链的技术核心,不仅负责实现智能设备的各项功能,还为下游应用提供技术支持和解决方案,推动整个产业链的创新和发展。具身智能产业链上游奠定硬件基础,中游打造技术核心2.2 具身智能产业链构成分析1315下游环节是产业链的最终输出端,涵盖了机器人、自动驾驶载具等主要产品,以及这些产品在工业制造、服务业、医疗康复、教育娱乐、交通出行、公共安全等领域的多元化应用场景。这一环节直接面向市场和消费者,是产业链价值实现的最终体现。主要产品方面,机器人占据了重要地位,包括
28、服务机器人、工业机器人、医疗机器人、特种机器人、人形机器人等。这些机器人凭借先进的传感器、算法和控制技术,能够在各种环境中执行复杂任务,不仅提升了服务效率和质量,还推动了制造业自动化水平的提升,并在医疗领域为患者提供了精准的辅助治疗。自动驾驶载具也是重要的一环,其中自动驾驶汽车、无人机和eVTOL尤为突出。自动驾驶汽车利用自主导航和避障技术,提高了交通安全和出行效率,为人们带来了更加便捷的出行体验。无人机则具备垂直起降、悬停、自主飞行等能力,在航拍、物流、农业、救援等领域发挥着重要作用。eVTOL结合了传统航空器的快速性与地面交通工具的便捷性,能够在城市密集区域实现垂直起降,极大地提高了空间利
29、用效率。应用场景方面,具身智能产品广泛应用于多个领域。在工业制造领域,人形机器人和工业机器人等具身智能产品在自动化生产线、智能仓储与物流以及质量控制与检测等环节发挥重要作用,推动制造业转型升级。在服务业领域,酒店、餐饮、零售与电商等行业通过引入智能机器人提升服务效率和客户体验。在医疗康复领域,辅助康复训练机器人的应用,为患者提供了个性化的康复治疗方案和便捷的医疗服务。在教育娱乐领域,教育机器人和娱乐机器人的出现,为学生的学习和休闲生活增添了更多乐趣和创意。在交通出行领域,自动驾驶汽车、无人机和eVTOL的发展正在改变人们的出行方式和物流配送模式。在公共安全领域,机器人产品在应急响应、救援以及安
30、防监控等方面的应用,为社会的安全和稳定提供了有力保障。具身智能产业链下游涵盖多元产品与应用场景,为社会带来广泛价值2.2 具身智能产业链构成分析14 芯片 传感器 伺服电机 AI算法 云服务 典型公司分析具身智能核心零部件与软件集成分析031517具身智能强调智能体与环境之间的物理交互和实时响应,而AI芯片作为实现这一目标的关键,面临着越来越高的算力要求,这主要体现在实时性、复杂性、能效比、可扩展性与灵活性,以及安全性与可靠性等方面。为了满足这些要求,AI芯片设计需要不断创新和优化,以提供更高性能、更低功耗、更灵活可扩展的算力解决方案。现阶段,根据技术架构种类划分,AI芯片主要包括GPGPU、
31、FPGA、以VPU和TPU为代表的ASIC芯片,以及存算一体芯片,这些不同类型的芯片各具特点和优势。其中,GPGPU凭借强大的并行计算能力和高带宽内存,在深度学习推理和训练等计算密集型任务中表现出色;FPGA则以其高灵活性和可重构性,在模型优化加速、物体检测加速等多个领域得到广泛应用;ASIC芯片主要针对特定应用进行定制优化,提供高效的计算和推理能力;而存算一体芯片则通过紧密结合存储和计算单元,能够降低能耗并提高计算效率,特别适用于边缘计算和实时推理任务。具身智能的实时交互与响应,对AI芯片提出更高要求3.1 芯片1601实时性要求具身智能需要实时处理传感器数据,快速做出决策,例如自动驾驶需实
32、时分析摄像头、雷达数据,调整行驶状态,要求芯片具备极高算力,短时间内完成复杂计算任务02复杂性需求具身智能涉及多领域交叉,算法模型复杂,需处理大量数据和参数,深度学习模型广泛应用,需要大量计算资源,芯片算力决定系统支持的算法复杂度和模型精度03能效比考量具身智能常在移动设备或嵌入式系统中运行,功耗有限制,需考虑芯片能效比。高能效比芯片能降低能耗,延长设备使用时间,对提升系统实用性和用户体验具有重要意义04可扩展性与灵活性具身智能产品技术进步和应用场景拓展导致算力需求变化,芯片设计需具备可扩展性和灵活性。模块化设计或先进封装技术可实现算力灵活扩展和性能优化05安全性与可靠性具身智能应用涉及自动驾
33、驶、医疗设备等领域,对安全性有极高要求。芯片作为核心部件,其安全性和可靠性至关重要,需加强芯片的安全防护和可靠性设计,确保系统稳定运行图示:具身智能对芯片算力提出更高的要求数据来源:36氪研究院根据公开资料整理18AI芯片市场竞争激烈,各厂商在技术创新上持续深耕,加速产品迭代,以抢占市场份额。英伟达将GPU架构的更新频率从两年一次加速到一年一次,并计划不断推出新产品,如Blackwell、Blackwell Ultra、Rubin及Rubin Ultra,持续巩固其行业领先地位。AMD和英特尔则分别推出了MI325X、MI350和MI400系列加速器,以及Gaudi 2和Gaudi 3 AI加
34、速器,通过积极的产品更新策略和技术创新,力求在市场中占据优势。除了硬件的产品竞争力,三大巨头还致力于工艺制程、高带宽内存及互联技术等维度的创新。工艺制程方面,采用3纳米工艺,以提升芯片的性能和能效比,并降低功耗。高带宽内存方面,第五代HBM3E已广泛应用于AI芯片中,下一代AI芯片预计将采用第六代HBM4,以满足更高的带宽需求。互联技术方面,为了解决AI芯片之间高效传输数据的问题,纷纷自研互联技术。英伟达的NVLink和AMD的Infinity Fabric就是典型代表,它们通过提供高带宽、低延迟的数据传输能力,提升系统的整体性能。英特尔则继续沿用传统的以太网互联技术,并通过提高带宽来优化数据
35、传输效率。尽管英伟达、AMD、英特尔等巨头在AI芯片市场居于领先地位,但在政策支持与市场需求的双重驱动下,国内AI芯片厂商正在加速布局,力求弯道超车,推动国产替代进程显著加速。华为、地平线等企业在深度学习、自动驾驶等关键领域展现出强劲实力。例如,华为的昇腾910芯片基于7nm增强版工艺,最大功耗为350W,算力可达到256TFOPS;地平线的征程系列芯片已在多家车企实现量产应用。同时,寒武纪的云端AI芯片、黑芝麻的智能座舱芯片等亦表现不俗。此外,亿铸科技、知存科技、苹芯科技、九天睿芯等一批初创公司选择跳脱传统架构,布局存算一体架构等新兴技术,力图填补国内市场空白。预计未来3-5年内,国产AI芯
36、片在算力、能效比等核心指标上有望实现质的飞跃,进一步缩小与国际领先水平的差距。AI芯片市场激烈竞争,国内外厂商加速创新以巩固或抢占市场3.1 芯片1719对于具身智能而言,智能体的力感知能力以及与外部的触觉、视觉、听觉交互能力极为关键,直接影响其可使用范围。力传感器能够测量智能体与环境的接触力和力矩,对于复杂和精细作业至关重要。其中,六维力传感器是力控核心部件,为国产替代重点。六维力传感器技术壁垒和价值量高,国内多家企业,如安培龙、华培动力、东华测试等,正在加速这一产品的研发和生产,并已取得一定成果。触觉传感器模仿生物触觉,提供外界感知,对智能体末端的动作执行和精细操作同样重要。目前特斯拉Op
37、timus Gen2等多个人形机器人手部已明确使用指尖触觉传感器,但技术路线并未统一。IMU惯性传感器能够测量物体的角速度和加速度,对智能体姿态控制和定位导航具有关键作用。目前该领域被国际厂商所垄断,国产替代空间大,国内芯动联科、华依科技、敏芯股份等多家企业正加速研发和生产高性能IMU产品。视觉传感器助力智能体直接获取外部图像信息,以实现模型和软件运行。目前国内企业已具备较高性能的视觉传感器生产能力。具身智能依赖于力感知与多模态交互能力,国内企业正加速研发和生产相关核心传感器3.2 传感器18图示:具身智能主要传感器及发展特点数据来源:36氪研究院根据公开资料整理主要传感器视觉传感器能够获取外
38、界图像信息,并对其进行处理和分析,使智能体具备自主感知和识别环境的能力。3D视觉传感器能够提供更为丰富的空间信息,提高识别精度和交互性;而2D视觉传感器则成本更低,适用于对精度要求不高的场景力传感器测量智能体末端操作器和外部环境相互接触或抓取工件时所承受力和力矩的传感器,对完成复杂、精细的作业和具身智能化起着重要作用。六维力传感器能同时检测三维空间中的全部力信息,测量最为全面,但技术难度和成本也相对较高触觉传感器能够模仿生物触觉,感知外界的压力、温度、形状等物理性质,对于智能体肢体末端精细操作至关重要。压阻式触觉传感器因技术成熟、成本低廉而成为主流,而MEMS压阻式传感器则因其体积小、集成度高
39、而备受关注IMU惯性传感器IMU(惯性测量单元)是一种能够测量物体三轴角速度和加速度的设备,对于智能体姿态控制、定位导航等至关重要。IMU通常由加速度计、陀螺仪和磁力计等组件构成,能够提供全面的运动信息20对于具身智能来说,电机的主要作用是作为执行机构,将智能系统的指令转化为具体的物理动作,实现机器与环境的交互。其中,伺服电机起到关键作用,它不仅是实现机器精确操作和运动控制的核心部件,还通过其高可靠性、稳定性和灵活性为系统的持续运行和智能表现提供有力保障。伺服电机主要分为直流和交流两大类,二者各具特色,适用于不同的应用场景。直流伺服电机具有优良的调速性能和较大的启动转矩,特别适用于需要频繁启动
40、、制动及反转的场景。对于具身智能来说,当机器需要快速而精确的位置调整时,直流伺服电机能迅速响应控制指令,实现精准定位。同时,其控制系统相对简单,维护成本较低,因此成为经济高效的选择。交流伺服电机则以其无电刷和换向器的结构设计著称,这种设计显著提升了电机的可靠性和使用寿命。在具身智能中,交流伺服电机能够长时间地稳定运行,无需频繁维护,能够有效降低整体运营成本。同时,它还具有较高的功率密度和较强的动态响应性能,使得它能够在高速、高精度的运动控制任务中表现出色。伺服电机主要分为直流和交流两大类,二者各具特色,适用于不同的应用场景3.3 电机(含伺服电机)19提升整体系统的智能表现高效的速度与加速度控
41、制高可靠性和稳定性灵活的控制方式精确的位置控制伺服电机的高精度位置控制能力确保具身智能准确无误地执行操作伺服电机与具身智能结合,显著提升智能表现,使机器能更智能地感知环境、做出决策并执行任务伺服电机能实现高效的速度和加速度控制,使具身智能实现快速、平稳的运动控制,满足复杂任务需求伺服电机可与各种控制器和传感器连接。实现复杂的运动控制任务伺服电机采用先进的制造工艺和材料,为具身智能的持续运行提供有力保障伺服电机图示:伺服电机在具身智能中的主要作用数据来源:36氪研究院根据公开资料整理21伺服电机的核心难度,即导致各国技术差距的主要原因,主要在三个方面:电机的基础性研究、高精度伺服驱动器的研发以及
42、编码器的技术。电机的基础性研究涉及电磁学、热力学、材料科学等多个领域,要求深入探索电机的运行机理和性能优化。高精度伺服驱动器的研发则需要解决控制算法、功率放大、信号处理等一系列复杂问题,以实现电机的精确控制。而编码器的技术则是伺服电机实现闭环控制的关键,它要求具备高分辨率、高稳定性和可靠性,以确保电机的位置、速度和加速度等参数能够被准确测量和反馈。这三个方面的技术难度和挑战,共同构成了伺服电机技术的核心壁垒。目前,我国伺服系统市场主要分为日韩品牌、欧美品牌以及国产品牌三大类型。由于伺服系统所需技术水平较高,高端市场长期以来被外资垄断。然而,近年来,国内厂商通过引进国外先进技术并进行消化吸收等策
43、略,持续增强在伺服系统领域的技术研发与生产实力,向中高端产品进军,国产伺服系统的产品品质和技术水准因此得到显著提升,国产替代加速进行。据MIR数据,2023年,通用交流伺服系统国产化率已经超过37%,其中汇川技术的市场份额超23%,是西门子的2倍多。伺服电机技术壁垒较高,国产品牌持续增强技术研发,市场份额实现大幅提升3.3 电机(含伺服电机)20图示:2023年通用交流伺服系统市场份额数据来源:MIR,36氪研究院整理23.0%10.0%8.0%7.0%7.0%6.0%3.0%3.0%4.0%4.0%3.0%22.0%汇川西门子三菱安川台达松下电器机电禾川埃斯顿无锡信捷雷赛欧姆龙其他22直驱电
44、机作为伺服技术发展的产物,除了延续伺服电机的优良特性外,还凭借其低速大扭矩、高精度定位、快速响应、结构简单、低损耗、低噪音及易维护等特性,成为具身智能的核心驱动组件。特别是在具身智能机器人领域,准直驱电机对机器人关节系统的革新尤为显著。机器人关节系统作为机器人的动作执行者,直接决定了机器人的运动性能、稳定性和工作效率。准直驱电机的引入,强化了关节系统的减速、传动和扭矩提升能力,实现了机器人动作的高效与低噪,被誉为机器人运动的“心脏”。然而,当前机器人关节模组市场仍存产品定制化导致标准不统一、参数虚标现象普遍等问题,增加了需求方的选购难度,也给行业健康发展带来一定隐患。对此,本末科技推出P10系
45、列准直驱机器人关节模组,2.5Nm/A最高转矩系数为行业树立了新标杆。该模组在核心指标、稳定性、精准度、静音性和通用性上均进行了优化,并通过实际应用验证,广泛适用于机械狗、机械臂、人形机器人、轮足机器人、科技竞赛、实验载台等多个领域,以其卓越的性能和可靠性赢得了市场的广泛认可。直驱电机的应用为机器人关节系统带来了前所未有的变革3.3 电机(含伺服电机)21图示:直驱电机的主要特点与优势数据来源:36氪研究院根据公开资料整理01低速大扭矩直驱电机能够在低速状态下输出大扭矩,满足具身智能系统对驱动力和负载能力的需求,使得机器能够轻松应对各种复杂任务02高精度定位直驱电机通过直接驱动负载减少中间传动
46、环节的误差,实现了高精度定位,使得具身智能得以精确控制位置和轨迹03高响应速度直驱电机的动态响应速度快,能够在短时间内达到所需转速和扭矩,提高系统的灵敏性和反应速度04结构简单直驱电机无需复杂的传动机构,结构紧凑,体积小巧,便于集成到具身智能系统中,降低了系统的复杂性和成本05减小机械损耗由于减少了中间传动环节,直驱电机的机械损耗显著降低,提高了系统的能效和运行稳定性06低噪声直驱电机在运行过程中产生的噪声较低,有助于提升具身智能系统的用户体验和工作环境质量07少维护直驱电机的结构简单且磨损部件少,因此维护成本较低,延长了系统的使用寿命23AI算法,特别是大模型的引入,极大地提升了具身智能的感
47、知精度、决策效率和执行自主性,使其能够更灵活地适应复杂多变的环境,推动智能技术迈向新高度。国内大模型市场竞争激烈,通用与垂类大模型均展现出强大应用潜力3.4 AI算法22图示:大模型对具身智能的主要作用数据来源:36氪研究院根据公开资料整理强大的数据处理和分析能力,精确理解环境传感器数据(如图像、声音),为后续决策和执行提供高质量信息输入显著提升感知精度提高执行自主性在缺乏明确的指令时,根据环境和任务需求自主决策和执行,减少对人类干预的依赖,提升应对突发和复杂环境的能力增强决策效率增强学习和优化能力出色的自然语言处理和模式识别能力,能够快速解析复杂任务指令,生成有效决策方案。减少响应时间,提高
48、任务完成效率和质量通过持续环境交互收集数据,优化内部模型和策略。适应环境变化和任务需求变化,保持竞争力“大模型+具身智能”正处于技术探索的初期阶段,技术路线尚未收敛,但已经展现出诸多潜力与方向。在机器人领域,该技术正引领着任务级交互与自主操作能力的飞跃,推动多机器人协作系统的高效协同,以及长期任务规划与优化的深度探索。而在自动驾驶领域,则聚焦于提升高精度感知与决策能力,强化行为预测与路径规划的精准度,并不断优化系统的安全与鲁棒性设计,以确保行驶的安全性与稳定性。目前,国内公布的大模型数量已超过300个,市场竞争激烈。其中,百度文心一言、阿里云通义、腾讯混元等通用类大模型在自然语言处理方面表现出
49、色,且其应用范围正逐步拓展至多模态交互、知识问答、逻辑推理等多个维度,展现出强大的通用性和扩展性。与此同时,DriveGPT、Apollo ADFM等垂类大模型则更加专注于特定行业或领域的深度赋能,它们已被成功应用于自动驾驶等领域,展现出极高的专业性和应用价值。24具身智能,尤其是涉及执行复杂任务和拥有高级交互能力的具身智能(如人形机器人),需要处理大量的数据和运行复杂的算法。云服务基于云计算技术,能够提供弹性可扩展的计算资源,满足具身智能在处理大规模数据和运行高性能算法时的需求。从整体来看,我国云服务行业持续展现出强劲的活力。根据中国信通院的最新数据,2023年我国云计算市场规模达到了6,1
50、65亿元,与去年同期相比实现了35.5%的显著增长。在生成式AI和大模型所带动的算力与应用需求的强劲刺激下,云计算市场规模预计将保持长期稳定的增长态势,有望在2027年突破2.1万亿元大关。在竞争格局方面,阿里云、天翼云、移动云、华为云、腾讯云以及联通云稳居中国公有云IaaS市场份额的前六名。而在公有云PaaS领域,阿里云、百度云、华为云、腾讯云、天翼云和移动云则占据了领先的地位。值得注意的是,受生成式AI和大模型等前沿技术的影响,云计算市场正面临着新的发展机遇。中腰部厂商正积极借助科技平台的优势,强势发力,推动云业务向智能化方向加速转型。我国云服务行业活力强劲,市场规模持续扩大,竞争格局清晰
51、,云业务智能化转型加速3.5 云服务233,2294,5506,1658,37811,78015,98521,40454.4%202140.9%202235.5%202335.9%2024e40.6%2025e35.7%2026e33.9%2027e市场规模(亿元)增长率(%)图示:中国云计算市场规模及增速数据来源:中国信息通讯研究院,36氪研究院整理25寒武纪成立于2016年,专注于人工智能芯片产品的研发与技术创新,致力于打造人工智能领域的核心处理器芯片。公司向客户提供云边端一体、软硬件协同、训练推理融合、具备统一生态的系列化智能芯片产品和平台化基础系统软件。寒武纪的核心竞争力主要体现以下三
52、个方面:1)技术创新。其技术优势在于智能处理器微架构与指令集优化。这些技术对人工智能应用及各类算法进行了优化,使得寒武纪的芯片产品在性能功耗比和性能价格比上具有显著优势。此外,寒武纪针对大模型领域进行了底层硬件架构指令集和基础软件的优化,加速了产品应用的落地。2)软硬件协同。寒武纪能够提供云边端一体、软硬件协同、训练推理融合的系列化智能芯片产品和平台化基础系统软件,以便更好满足不同场景的需求,提高系统的整体性能和效率。3)生态建设。寒武纪构建完善的软硬件生态,提供统一的开发平台和丰富的系统软件支持,并深化产学合作,与多所高校合作开设基于其软硬件平台的人工智能课程,进一步推动生态的发展。寒武纪:
53、专注于人工智能芯片产品的研发与技术创新3.6 典型公司分析2401智能加速卡思元370系列思元290思元270系列02智能加速系统玄思1000智能加速器整机03智能边缘计算模组思元220系列04终端智能处理器IPCambricon-1MCambricon-1H05软件开发平台Cambricon NeuWareMagicMind图示:寒武纪的主要产品技术数据来源:寒武纪官网,36氪研究院整理26汇川技术成立于2003年,聚焦工业领域的自动化、数字化、智能化,专注“信息层、控制层、驱动层、执行层、传感层”核心技术。汇川技术的核心竞争力在于以下三方面:1)技术创新与研发实力。汇川技术高度重视技术创新
54、和研发投入,每年将收入的8%至10%用于研发,这一比例在业界处于较高水平。这种持续的研发投入确保了公司在技术上的领先地位。2)全面的产品线与解决方案。经过20多年的发展,公司已形成通用自动化、新能源汽车、智慧电梯、轨道交通等四大业务板块,并在多个细分领域占据龙头地位。同时,公司的产品广泛应用于新能源汽车、电梯、起重、注塑机等多个领域,能够满足不同客户的需求。此外,汇川技术坚持为客户提供整体解决方案,以及为细分行业的重点客户提供个性化设计,定价也更灵活。3)市场份额与品牌影响力。在工业自动化领域,汇川技术的通用伺服系统、低压变频器、小型PLC等产品在中国市场份额均名列前茅。凭借其卓越的产品性能和
55、服务质量,赢得了广泛的市场认可和品牌影响力。汇川技术:工控龙头,专注于工业自动化控制与驱动技术3.6 典型公司分析25图示:汇川技术的主要产品数据来源:汇川技术官网,36氪研究院整理工业自动化变频器、伺服、电机、气动、传感器、可编程逻辑控制器、IO系统、人机交互、PAC智能控制器、CNC控制器、柜机、工业视觉01能源储能系统、工业电源02工业机器人机器人系统、机器人控制柜、机器人软件、机器人选配件、直线导轨(精密机械)、滚珠丝杠(精密机械)、单轴机器人(精密机械)03工业互联网工业云平台、智能硬件、物联网屏04智能电梯电梯控制柜、电梯一体化控制器、电梯专用变频器、门机一体化控制器、扶梯一体化控
56、制器、电梯单板附件、电梯整机附件05新能源汽车06轨道交通0727广和通成立于1999年,是行业领先的无线通信模组和AIoT解决方案供应商,主要提供融合无线通信模组、物联网应用解决方案在内的一站式服务,致力于将可靠、便捷、安全、智能的无线通信方案普及至每一个物联网场景,为用户带来完美无线体验、丰富智慧生活。无线通信模组作为广和通的核心产品,是其业务发展的基石和主要营收来源。广和通的产品种类覆盖广泛,包括蜂窝通信模组(5G/4G/3G/2G/LPWA)、车规级模组、智能模组、GNSS模组及天线产品等。这些产品广泛应用于云办公、移动宽带、智慧交通、智慧零售、智能机器人等多个领域,极大地推动了各行业
57、的数字化转型。同时,广和通凭借其深厚的技术积累和丰富的行业经验,精准地洞察到了具身智能作为AI领域继大模型之后的又一重要发展趋势,从而在该领域展开了深度的战略布局。广和通根据具身智能行业的特殊需求,针对性地开发及优化算力主控方案(高算力+Linux+边缘侧部署),并推出了具身智能机器人行业级参考设计(传感器+机械臂+算力主控)。此外,广和通还自主研发了具身智能机器人开发平台Fibot,该平台不仅具备强大的感知、定位、导航和动作控制能力,还集成了多种深度学习和强化学习AI算法,能够为客户提供高效、便捷的二次开发环境。广和通:行业领先的无线通信模组和AIoT解决方案供应商,在具身智能领域进行深度布
58、局3.6 典型公司分析26图示:Fibot具身智能机器人开发平台数据来源:广和通,36氪研究院整理执行机械臂机械臂升降结构全向移动底盘示教机械臂算力平台机器人的动作执行机构,用来独立执行各种动作执行机械臂动作模仿学习的教学机构机器人的大脑+小脑机器人的运动机构调节执行机械臂的高度执行夹爪抓取物品目前最大支持3KG示教夹爪28广和通具身智能机器人开发平台Fibot不仅能够满足客户对Mobile ALOHA协同学习与示教操作数据验证的需求,还通过一系列技术创新,极大地提升了机器人在复杂场景下的适应能力。1)高度灵活的开发环境。Fibot通过底盘选配的激光雷达或双目模组,能够实现室内外空间感知、建图
59、、路径规划和动态避障等核心算法的二次开发,为用户提供高度灵活的开发环境。同时,Fibot集成了多种深度学习和强化学习AI算法,结合高效的感知系统与智能决策框架,能够显著提升二次开发的效率,使客户能够更快速、更精准地实现定制化功能。2)创新的全向轮底盘设计。Fibot采用了创新性的全向轮底盘设计,这一设计赋予了机器人在狭窄空间内原地旋转及平移的能力,彻底打破了传统机器人移动方式的局限。无论是复杂的工厂生产线,还是拥挤的城市街道,Fibot都能凭借其卓越的机动性轻松应对,极大拓宽了应用场景。3)可拆卸式训练臂与性能优化。为了进一步提升Fibot的综合性能,广和通采用了可拆卸式训练臂的结构设计,方便
60、客户在完成算法开发后进行实测与部署。相比于原斯坦福Mobile ALOHA方案,Fibot赋予了机械臂更多的自由度及臂展范围,并对机械臂额定负载能力进行了超150%的优化。Fibot凭借卓越的技术性能,已经在多个领域展现出巨大的应用潜力和价值。在智能制造领域,Fibot具身智能机器人不仅能够承担重复性高的生产任务,还能通过自主学习优化生产线流程,提高生产效率和灵活性。在医疗健康领域,高精度机械臂和机械手的应用,可为手术辅助和康复治疗提供有力支持,有效减轻医护人员的工作负担。在灾害救援领域,Fibot具身智能机器人能够进入人类难以到达的区域进行搜救和灾情评估,极大提升救援效率和安全性。未来,随着
61、技术的不断成熟和跨学科融合的日益加深,Fibot具身智能机器人将更加深入地融入人类社会,实现规模化的落地应用,促进社会生产力的跃升,为人们的生活质量带来实质性改善。广和通:具身智能机器人开发平台Fibot凭借其技术优势,在多个领域展现出巨大应用潜力3.6 典型公司分析27 人形机器人 非人形具身智能产品 典型公司分析具身智能主要产品分析042830人形机器人是具备人类外形特征和行动能力的智能机器人。它们以双腿行走,通过手臂和身体的协调来完成各种功能。同时,基于通用型算法和生成式AI,拥有语义理解、人机交互、自主决策等能力,并能通过人机交互实现任务理解与反馈。自2020年以来,人工智能技术快速发
62、展,特别是生成式AI与大模型的崛起,极大地推动了人机交互技术的成熟。这些技术通过融合环境感知、三维仿真、目标识别等先进算法,显著提升了人形机器人在“感知交互规划”三个核心环节的能力,进而提高了其智能化水平,为人形机器人的商业化应用奠定了坚实基础。生成式AI和大模型的崛起极大提升了人形机器人的智能化水平4.1 人形机器人29图示:大模型对人形机器人“感知交互规划”的主要提升作用数据来源:36氪研究院根据公开资料整理大模型感知数据收集与处理:大模型通过处理来自多种传感器的数据,实现对环境的全面感知,为人形机器人提供更加丰富的环境信息环境理解:利用深度学习算法,大模型能够从复杂数据中提取并理解有用信
63、息,这使得人形机器人在执行任务时更加灵活实时反馈:大模型具备高效的推理能力和低延迟的计算性能,能够确保人形机器人在感知到环境变化后迅速做出反应交互自然语言处理:通过自然语言处理技术,大模型使人形机器人能够理解人类的语言指令,并生成更流畅的自然语言回应非语言交互:通过分析表情、手势等非语言行为,大模型能据此生成相应的交互响应,让人形机器人互动更加自然和人性化适应性学习:通过分析用户的反馈和行为数据,模型能够自动调整交互方式,以更好地满足用户需求,提升用户体验规划任务分解与调度:大模型能够将复杂的任务分解为一系列简单的子任务,并根据任务优先级和资源状况进行合理的调度动作生成与优化:大模型根据规划任